Suppr超能文献

金属伪影降低算法对扁桃体癌大体肿瘤靶区勾画的影响:降低观察者间的变异性。

Impact of metal artifact reduction algorithm on gross tumor volume delineation in tonsillar cancer: reducing the interobserver variation.

机构信息

Department of Radiation Oncology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.

Department of Radiological Technology, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.

出版信息

BMC Med Imaging. 2022 Sep 6;22(1):161. doi: 10.1186/s12880-022-00889-0.

Abstract

BACKGROUND

Patients with tonsillar cancer (TC) often have dental fillings that can significantly degrade the quality of computed tomography (CT) simulator images due to metal artifacts. We evaluated whether the use of the metal artifact reduction (MAR) algorithm reduced the interobserver variation in delineating gross tumor volume (GTV) of TC.

METHODS

Eighteen patients with TC with dental fillings were enrolled in this study. Contrast-enhanced CT simulator images were reconstructed using the conventional (CT) and MAR algorithm (CT). Four board-certified radiation oncologists delineated the GTV of primary tumors using routine clinical data first on CT image datasets (GTV), followed by CT and CT fused image datasets (GTV) at least 2 weeks apart. Intermodality differences in GTV values and Dice similarity coefficient (DSC) were compared using Wilcoxon's signed-rank test.

RESULTS

GTV was significantly smaller than GTV for three observers. The other observer showed no significant difference between GTV and GTV values. For all four observers, the mean GTV and GTV values were 14.0 (standard deviation [SD]: 7.4) cm and 12.1 (SD: 6.4) cm, respectively, with the latter significantly lower than the former (p < 0.001). The mean DSC of GTV and GTV was 0.74 (SD: 0.10) and 0.77 (SD: 0.10), respectively, with the latter significantly higher than that of the former (p < 0.001).

CONCLUSIONS

The use of the MAR algorithm led to the delineation of smaller GTVs and reduced interobserver variations in delineating GTV of the primary tumors in patients with TC.

摘要

背景

由于金属伪影,扁桃体癌(TC)患者的牙齿填充物会显著降低 CT 模拟器图像的质量。我们评估了使用金属伪影减少(MAR)算法是否会降低勾画 TC 大体肿瘤体积(GTV)的观察者间变异性。

方法

本研究纳入了 18 名患有 TC 且有牙填充物的患者。使用常规(CT)和 MAR 算法(CT)重建增强 CT 模拟器图像。四位具有委员会认证的放射肿瘤学家首先使用常规临床数据在 CT 图像数据集(GTV)上勾画原发性肿瘤的 GTV,然后在至少 2 周后在 CT 和 CT 融合图像数据集(GTV)上勾画。使用 Wilcoxon 符号秩检验比较 GTV 值和 Dice 相似系数(DSC)的组间差异。

结果

三位观察者的 GTV 明显小于 GTV。另一位观察者的 GTV 和 GTV 值之间没有显著差异。对于所有四位观察者,平均 GTV 和 GTV 值分别为 14.0cm(标准差[SD]:7.4cm)和 12.1cm(SD:6.4cm),后者明显低于前者(p<0.001)。GTV 和 GTV 的平均 DSC 分别为 0.74(SD:0.10)和 0.77(SD:0.10),后者明显高于前者(p<0.001)。

结论

使用 MAR 算法会导致勾画的 GTV 更小,并降低 TC 患者原发性肿瘤 GTV 勾画的观察者间变异性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/396b/9450459/41cd7f326f81/12880_2022_889_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验