Zou Huachun, Wang Zonghuo, Guo Mengya, Peng Kun, Zhou Jian, Zhou Lili, Fan Bing
School of Medical and Information Engineering, Gannan Medical University, Ganzhou, China.
Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China.
PeerJ. 2025 Jun 4;13:e19516. doi: 10.7717/peerj.19516. eCollection 2025.
Aiming to evaluate the effects of the smart metal artifact reduction (MAR) algorithm and combinations of various scanning parameters, including radiation dose levels, tube voltage, and reconstruction algorithms, on metal artifact reduction and overall image quality, to identify the optimal protocol for clinical application.
A phantom with a pacemaker was examined using standard dose (effective dose (ED): 3 mSv) and low dose (ED: 0.5 mSv), with three scan voltages (70, 100, and 120 kVp) selected for each dose. Raw data were reconstructed using 50% adaptive statistical iterative reconstruction-V (ASIR-V), ASIR-V with MAR, high-strength deep learning image reconstruction (DLIR-H), and DLIR-H with MAR. Quantitative analyses (artifact index (AI), noise, signal-to-noise ratio (SNR) of artifact-impaired pulmonary nodules (PNs), and noise power spectrum (NPS) of artifact-free regions) and qualitative evaluation were performed.
Quantitatively, the deep learning image recognition (DLIR) algorithm or high tube voltages exhibited lower noise compared to the ASIR-V or low tube voltages ( < 0.001). AI of images with MAR or high tube voltages was significantly lower than that of images without MAR or low tube voltages ( < 0.001). No significant difference was observed in AI between low-dose images with 120 kVp DLIR-H MAR and standard-dose images with 70 kVp ASIR-V MAR ( = 0.143). Only the 70 kVp 3 mSv protocol demonstrated statistically significant differences in SNR for artifact-impaired PNs ( = 0.041). The f and f values were similar across various scenarios, indicating that the MAR algorithm did not alter the image texture in artifact-free regions. The qualitative results of the extent of metal artifacts, the confidence in diagnosing artifact-impaired PNs, and the overall image quality were generally consistent with the quantitative results.
The MAR algorithm combined with DLIR-H can reduce metal artifacts and enhance the overall image quality, particularly at high kVp tube voltages.
旨在评估智能金属伪影减少(MAR)算法以及包括辐射剂量水平、管电压和重建算法在内的各种扫描参数组合对金属伪影减少和整体图像质量的影响,以确定临床应用的最佳方案。
使用标准剂量(有效剂量(ED):3 mSv)和低剂量(ED:0.5 mSv)对带有起搏器的体模进行检查,每种剂量选择三种扫描电压(70、100和120 kVp)。使用50%自适应统计迭代重建-V(ASIR-V)、带MAR的ASIR-V、高强度深度学习图像重建(DLIR-H)和带MAR的DLIR-H对原始数据进行重建。进行了定量分析(伪影指数(AI)、噪声、伪影受损肺结节(PNs)的信噪比(SNR)以及无伪影区域的噪声功率谱(NPS))和定性评估。
在定量方面,与ASIR-V或低管电压相比,深度学习图像识别(DLIR)算法或高管电压显示出更低的噪声(<0.001)。带有MAR或高管电压的图像的AI显著低于没有MAR或低管电压的图像(<0.001)。120 kVp DLIR-H MAR的低剂量图像与70 kVp ASIR-V MAR的标准剂量图像之间的AI没有显著差异(=0.143)。只有70 kVp 3 mSv方案在伪影受损PNs的SNR方面表现出统计学显著差异(=0.041)。在各种情况下,f和f值相似,表明MAR算法没有改变无伪影区域的图像纹理。金属伪影程度、对伪影受损PNs诊断的信心以及整体图像质量的定性结果与定量结果总体一致。
MAR算法与DLIR-H相结合可以减少金属伪影并提高整体图像质量,特别是在高管电压管电压下。