Yang Shengdu, Zhang Yang, Bai Junwei, He Yushun, Zhao Xiaohai, Zhang Junhua
State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China.
China Bluestar Chengrand Chemical Co. Ltd, Chengdu 610041, China.
ACS Nano. 2022 Sep 27;16(9):15086-15099. doi: 10.1021/acsnano.2c06245. Epub 2022 Sep 7.
Broadband strong absorption of solar light over a wide range of angles, low heat loss, and excellent structural reliability are of significance for enhancing solar harvesting of photothermal materials; however, it remains a challenge to achieve these attributes simultaneously. Herein, a tailored photothermal composite nanodroplet (LMP-rGO) featured with dual-interface, which comprises liquid metal (LM) core with polydopamine (PDA) photothermal middle layer of tunable thickness and reduced graphene oxide (rGO) shell, is particularly prepared. Thermal-insulating PDA coating and light-absorbing carbonaceous shell allow it to synergistically suppress heat loss and reinforce photon absorptivity. To maximize photothermal conversion and photon harvesting yield on solar light, inspired by light trapping architecture, a three-dimensional (3D) stepped micropyramid grating array framework is tactfully designed to ameliorate light coupling. Utilizing the scalability and cost-effectiveness of the poly(vinyl alcohol) (PVA), the flexible 3D-structured PVA/LMP-rGO absorbers are successfully constructed via a controllable casting molding strategy. As a proof-of-concept, the developed micrograting absorber exhibits a desirable combination of strong broadband selective light absorption (94.9% for parallel to the grating direction and 97.3% for perpendicular to the grating direction), superior photothermal conversion effect (89.4%), high heat flux density, and fascinating mechanical properties. Also, an efficient and steady solar-driven thermoelectric generator (STEG) system for real-time solar-heat-electric conversion, with its high peak power density of 245.9 μW cm under one sun irradiation, is further displayed, making an important step to rationally design LM-based nanocomposite droplets for solar energy harvesting.
在很宽的角度范围内对太阳光进行宽带强吸收、低热量损失以及出色的结构可靠性对于提高光热材料的太阳能收集具有重要意义;然而,同时实现这些特性仍然是一个挑战。在此,特别制备了一种具有双界面的定制光热复合纳米液滴(LMP-rGO),它由液态金属(LM)核、具有可调厚度的聚多巴胺(PDA)光热中间层和还原氧化石墨烯(rGO)壳组成。隔热的PDA涂层和吸光的碳质壳使其能够协同抑制热量损失并增强光子吸收率。为了在太阳光上最大化光热转换和光子收集效率,受光捕获结构的启发,巧妙地设计了三维(3D)阶梯状微金字塔光栅阵列框架以改善光耦合。利用聚乙烯醇(PVA)的可扩展性和成本效益,通过可控的浇铸成型策略成功构建了柔性3D结构的PVA/LMP-rGO吸收器。作为概念验证,所开发的微光栅吸收器展现出了理想的组合,即强宽带选择性光吸收(平行于光栅方向为94.9%,垂直于光栅方向为97.3%)、优异的光热转换效果(89.4%)、高热通量密度以及出色的机械性能。此外还展示了一种高效且稳定的用于实时太阳能-热-电转换的太阳能驱动热电发电机(STEG)系统,在一个太阳辐照下其峰值功率密度高达245.9 μW/cm²,这为合理设计基于液态金属的纳米复合液滴用于太阳能收集迈出了重要一步。