Suppr超能文献

用于共享账户跨域序列推荐的时间间隔增强图神经网络

Time Interval-Enhanced Graph Neural Network for Shared-Account Cross-Domain Sequential Recommendation.

作者信息

Guo Lei, Zhang Jinyu, Tang Li, Chen Tong, Zhu Lei, Yin Hongzhi

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Mar;35(3):4002-4016. doi: 10.1109/TNNLS.2022.3201533. Epub 2024 Feb 29.

Abstract

Shared-account cross-domain sequential recommendation (SCSR) task aims to recommend the next item via leveraging the mixed user behaviors in multiple domains. It is gaining immense research attention as more and more users tend to sign up on different platforms and share accounts with others to access domain-specific services. Existing works on SCSR mainly rely on mining sequential patterns via recurrent neural network (RNN)-based models, which suffer from the following limitations: 1) RNN-based methods overwhelmingly target discovering sequential dependencies in single-user behaviors and they are not expressive enough to capture the relationships among multiple entities in SCSR; 2) all existing methods bridge two domains via knowledge transfer in the latent space and ignore the explicit cross-domain graph structure; and 3) none existing studies consider the time interval information among items, which is essential in the sequential recommendation for characterizing different items and learning discriminative representations for them. In this work, we propose a new graph-based solution, namely, time interval-enhanced domain-aware graph convolutional network (TiDA-GCN), to address the above challenges. Specifically, we first link users and items in each domain as a graph. Then, we devise a domain-aware graph convolution network to learn user-specific node representations. To fully account for users' domain-specific preferences on items, two effective attention mechanisms are further developed to selectively guide the message-passing process. Moreover, to further enhance item- and account-level representation learning, we incorporate the time interval into the message passing and design an account-aware self-attention module for learning items' interactive characteristics. Experiments demonstrate the superiority of our proposed method from various aspects.

摘要

共享账户跨域序列推荐(SCSR)任务旨在通过利用多个域中的混合用户行为来推荐下一个项目。随着越来越多的用户倾向于在不同平台上注册并与他人共享账户以访问特定领域的服务,该任务正受到广泛的研究关注。现有的SCSR工作主要依赖于通过基于循环神经网络(RNN)的模型挖掘序列模式,这些模型存在以下局限性:1)基于RNN的方法绝大多数旨在发现单用户行为中的序列依赖关系,它们的表达能力不足以捕捉SCSR中多个实体之间的关系;2)所有现有方法都通过潜在空间中的知识转移来桥接两个域,而忽略了显式的跨域图结构;3)现有的研究都没有考虑项目之间的时间间隔信息,而这在序列推荐中对于表征不同项目并为它们学习判别性表示至关重要。在这项工作中,我们提出了一种新的基于图的解决方案,即时间间隔增强的域感知图卷积网络(TiDA-GCN),以应对上述挑战。具体来说,我们首先将每个域中的用户和项目链接为一个图。然后,我们设计了一个域感知图卷积网络来学习用户特定的节点表示。为了充分考虑用户对项目的特定领域偏好,我们进一步开发了两种有效的注意力机制,以选择性地指导消息传递过程。此外,为了进一步增强项目级和账户级的表示学习,我们将时间间隔纳入消息传递中,并设计了一个账户感知自注意力模块来学习项目的交互特征。实验从各个方面证明了我们提出的方法的优越性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验