Suppr超能文献

循环 Dickkopf1 与代谢适应平行,并可预测 COVID-19 患者的疾病轨迹。

Circulating Dickkopf1 Parallels Metabolic Adaptations and Predicts Disease Trajectories in Patients With COVID-19.

机构信息

Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, 01307 Dresden, Germany.

National Center for Tumor Diseases (NCT/UCC), Technische Universität Dresden, 01307 Dresden, Germany.

出版信息

J Clin Endocrinol Metab. 2022 Nov 25;107(12):3370-3377. doi: 10.1210/clinem/dgac514.

Abstract

CONTEXT AND AIMS

Coronavirus disease 19 (COVID-19) trajectories show high interindividual variability, ranging from asymptomatic manifestations to fatal outcomes, the latter of which may be fueled by immunometabolic maladaptation of the host. Reliable identification of patients who are at risk of severe disease remains challenging. We hypothesized that serum concentrations of Dickkopf1 (DKK1) indicate disease outcomes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected individuals.

METHODS

We recruited hospitalized patients with PCR-confirmed SARS-CoV-2 infection and included 80 individuals for whom blood samples from 2 independent time points were available. DKK1 serum concentrations were measured by ELISA in paired samples. Clinical data were extracted from patient charts and correlated with DKK1 levels. Publicly available datasets were screened for changes in cellular DKK1 expression on SARS-CoV-2 infection. Plasma metabolites were profiled by nuclear magnetic resonance spectroscopy in an unbiased fashion and correlated with DKK1 data. Kaplan-Meier and Cox regression analysis were used to investigate the prognostic value of DKK1 levels in the context of COVID-19.

RESULTS

We report that serum levels of DKK1 predict disease outcomes in patients with COVID-19. Circulating DKK1 concentrations are characterized by high interindividual variability and change as a function of time during SARS-CoV-2 infection, which is linked to platelet counts. We further find that the metabolic signature associated with SARS-CoV-2 infection resembles fasting metabolism and is mirrored by circulating DKK1 abundance. Patients with low DKK1 levels are twice as likely to die from COVID-19 than those with high levels, and DKK1 predicts mortality independent of markers of inflammation, renal function, and platelet numbers.

CONCLUSION

Our study suggests a potential clinical use of circulating DKK1 as a predictor of disease outcomes in patients with COVID-19. These results require validation in additional cohorts.

摘要

背景与目的

新冠肺炎(COVID-19)的病程表现出高度的个体间变异性,从无症状表现到致命结局不等,后者可能是宿主免疫代谢适应不良所致。可靠地识别有发生严重疾病风险的患者仍然具有挑战性。我们假设血清 Dickkopf1(DKK1)浓度可指示严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)感染个体的疾病结局。

方法

我们招募了经 PCR 确诊的 SARS-CoV-2 感染住院患者,并纳入了 80 名有 2 个独立时间点血样的个体。通过 ELISA 法测定血清 DKK1 浓度。从病历中提取临床数据,并与 DKK1 水平相关联。筛选了公共数据集,以观察 SARS-CoV-2 感染后细胞内 DKK1 表达的变化。以无偏倚的方式通过核磁共振波谱法对血浆代谢物进行分析,并与 DKK1 数据相关联。使用 Kaplan-Meier 和 Cox 回归分析来研究 COVID-19 背景下 DKK1 水平的预后价值。

结果

我们报告称,血清 DKK1 水平可预测 COVID-19 患者的疾病结局。循环 DKK1 浓度具有高度的个体间变异性,并在 SARS-CoV-2 感染期间随时间变化,与血小板计数有关。我们进一步发现,与 SARS-CoV-2 感染相关的代谢特征类似于禁食代谢,与循环 DKK1 丰度相呼应。与高水平 DKK1 的患者相比,低水平 DKK1 的患者死于 COVID-19 的可能性是其两倍,并且 DKK1 可独立于炎症标志物、肾功能和血小板计数来预测死亡率。

结论

我们的研究表明,循环 DKK1 作为 COVID-19 患者疾病结局的预测因子具有潜在的临床应用价值。这些结果需要在更多的队列中进行验证。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验