文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于人工智能算法的 MRI 在肾移植术后并发症诊断中的应用。

Artificial Intelligence Algorithm-Based MRI in the Diagnosis of Complications after Renal Transplantation.

机构信息

Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing 100020, China.

出版信息

Contrast Media Mol Imaging. 2022 Aug 16;2022:8930584. doi: 10.1155/2022/8930584. eCollection 2022.


DOI:10.1155/2022/8930584
PMID:36072641
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9398844/
Abstract

This study was to explore the diagnostic value of magnetic resonance imaging (MRI) optimized by residual segmentation attention dual channel network (DRSA-U-Net) in the diagnosis of complications after renal transplantation and to provide a more effective examination method for clinic. 89 patients with renal transplantation were selected retrospectively, and all underwent MRI. The patients were divided into control group (conventional MRI image diagnosis) and observation group (MRI image diagnosis based on DRSA-U-Net). The accuracy of MRI images in the two groups was evaluated according to the comprehensive diagnostic results. The root mean square error (RMSE) and peak signal-to-noise ratio (PSNR) of DRSA-U-Net on T1WI and T2WI sequences were better than those of U-Net and dense U-Net ( < 0.05); comprehensive examination showed that 39 patients had obstruction between ureter and bladder anastomosis, 13 cases had rejection, 10 cases had perirenal hematoma, 5 cases had renal infarction, and 22 cases had no complications; the diagnostic sensitivity, specificity, accuracy, and consistency of the observation group were higher than those of the control group ( < 0.05). In the control group, the sensitivity, specificity, and accuracy in the diagnosis of complications after renal transplantation were 66.5%, 84.1%, and 78.32%, respectively; in the observation group, the sensitivity, specificity, and accuracy in the diagnosis were 67.8%, 86.7%, and 80.6%, respectively. DRSA-U-Net denoising algorithm can clearly display the information of MRI images on the kidney, ureter, and surrounding tissues, improve its diagnostic accuracy in complications after renal transplantation, and has good clinical application value.

摘要

本研究旨在探讨基于残差分割注意力双通道网络(DRSA-U-Net)优化的磁共振成像(MRI)对肾移植后并发症的诊断价值,为临床提供更有效的检查方法。回顾性选取 89 例肾移植患者,均行 MRI 检查。患者分为对照组(常规 MRI 图像诊断)和观察组(基于 DRSA-U-Net 的 MRI 图像诊断)。根据综合诊断结果评估两组 MRI 图像的准确性。DRSA-U-Net 在 T1WI 和 T2WI 序列上的均方根误差(RMSE)和峰值信噪比(PSNR)均优于 U-Net 和密集 U-Net(<0.05);综合检查显示输尿管与膀胱吻合口梗阻 39 例、排斥反应 13 例、肾周血肿 10 例、肾梗死 5 例、无并发症 22 例;观察组诊断的灵敏度、特异度、准确度和一致性均高于对照组(<0.05)。对照组诊断肾移植后并发症的灵敏度、特异度和准确度分别为 66.5%、84.1%和 78.32%;观察组分别为 67.8%、86.7%和 80.6%。DRSA-U-Net 去噪算法能清晰显示肾、输尿管及周围组织的 MRI 图像信息,提高其对肾移植后并发症的诊断准确率,具有较好的临床应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8854/9398844/5377afb5284d/CMMI2022-8930584.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8854/9398844/47e592ecacb9/CMMI2022-8930584.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8854/9398844/1fba00a76b31/CMMI2022-8930584.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8854/9398844/cc57340f85cf/CMMI2022-8930584.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8854/9398844/b2fb8bda4a13/CMMI2022-8930584.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8854/9398844/34eaac64e403/CMMI2022-8930584.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8854/9398844/5377afb5284d/CMMI2022-8930584.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8854/9398844/47e592ecacb9/CMMI2022-8930584.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8854/9398844/1fba00a76b31/CMMI2022-8930584.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8854/9398844/cc57340f85cf/CMMI2022-8930584.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8854/9398844/b2fb8bda4a13/CMMI2022-8930584.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8854/9398844/34eaac64e403/CMMI2022-8930584.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8854/9398844/5377afb5284d/CMMI2022-8930584.006.jpg

相似文献

[1]
Artificial Intelligence Algorithm-Based MRI in the Diagnosis of Complications after Renal Transplantation.

Contrast Media Mol Imaging. 2022

[2]
[The Application Value of Artificial Intelligence-based Filtering and Interpolated Image Reconstruction Algorithm in Abdominal Magnetic Resonance Image Denoising].

Sichuan Da Xue Xue Bao Yi Xue Ban. 2021-3

[3]
Multimodal Magnetic Resonance Imaging to Diagnose Knee Osteoarthritis under Artificial Intelligence.

Comput Intell Neurosci. 2022

[4]
Artificial Intelligence Algorithm-Based Lumbar and Spinal MRI for Evaluation of Efficacy of Chinkuei Shin Chewan Decoction on Lumbar Spinal Stenosis.

Contrast Media Mol Imaging. 2021

[5]
Artificial Intelligence Algorithm-Based Computed Tomography Image of Both Kidneys in Diagnosis of Renal Dysplasia.

Comput Math Methods Med. 2022

[6]
Magnetic Resonance Imaging Features on Deep Learning Algorithm for the Diagnosis of Nasopharyngeal Carcinoma.

Contrast Media Mol Imaging. 2022

[7]
Diagnosis of Early Cervical Cancer with a Multimodal Magnetic Resonance Image under the Artificial Intelligence Algorithm.

Contrast Media Mol Imaging. 2022

[8]
Deep Learning-Based Diffusion-Weighted Magnetic Resonance Imaging in the Diagnosis of Ischemic Penumbra in Early Cerebral Infarction.

Contrast Media Mol Imaging. 2022

[9]
Artificial Intelligence Algorithm-Based MRI for Differentiation Diagnosis of Prostate Cancer.

Comput Math Methods Med. 2022

[10]
The Impacts of Subthalamic Nucleus-Deep Brain Stimulation (STN-DBS) on the Neuropsychiatric Function of Patients with Parkinson's Disease Using Image Features of Magnetic Resonance Imaging under the Artificial Intelligence Algorithms.

Contrast Media Mol Imaging. 2021

引用本文的文献

[1]
Artificial intelligence in kidney transplantation: a 30-year bibliometric analysis of research trends, innovations, and future directions.

Ren Fail. 2025-12

[2]
Comprehensive analysis of necroptosis-related genes in renal ischemia-reperfusion injury.

Front Immunol. 2023

本文引用的文献

[1]
Fuzzy System Based Medical Image Processing for Brain Disease Prediction.

Front Neurosci. 2021-7-30

[2]
Cardiac Imaging for Coronary Heart Disease Risk Stratification in Chronic Kidney Disease.

JACC Cardiovasc Imaging. 2021-3

[3]
Cine magnetic resonance urography for postoperative evaluation of reconstructive urinary tract after ileal ureter substitution: initial experience.

Clin Radiol. 2020-2-24

[4]
MRI for diagnosis of post-renal transplant complications: current state-of-the-art and future perspectives.

MAGMA. 2020-2

[5]
Functional-structural relationship in large-scale brain networks of patients with end stage renal disease after kidney transplantation: A longitudinal study.

Hum Brain Mapp. 2020-2-1

[6]
Early effects of kidney transplantation on the heart - A cardiac magnetic resonance multi-parametric study.

Int J Cardiol. 2019-6-4

[7]
Cardiovascular magnetic resonance left ventricular strain in end-stage renal disease patients after kidney transplantation.

J Cardiovasc Magn Reson. 2018-12-17

[8]
The role of MR imaging in the assessment of renal allograft vasculature.

Abdom Radiol (NY). 2018-10

[9]
Proton Nuclear Magnetic Resonance (¹H-NMR)-Based Metabolomic Evaluation of Human Renal Allografts from Donations After Circulatory Death.

Med Sci Monit. 2017-11-17

[10]
Feasibility of three-dimensional magnetic resonance angiography-fluoroscopy image fusion technique in guiding complex endovascular aortic procedures in patients with renal insufficiency.

J Vasc Surg. 2017-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索