Suppr超能文献

基于具有领导力学习的自适应粒子群优化的特征选择。

Feature Selection Based on Adaptive Particle Swarm Optimization with Leadership Learning.

机构信息

School of Computer Science, Hubei University of Technology, Wuhan 430070, China.

Xining Big Data Service Administration, Xining 810000, China.

出版信息

Comput Intell Neurosci. 2022 Aug 28;2022:1825341. doi: 10.1155/2022/1825341. eCollection 2022.

Abstract

With the rapid development of the Internet of Things (IoT), the curse of dimensionality becomes increasingly common. Feature selection (FS) is to eliminate irrelevant and redundant features in the datasets. Particle swarm optimization (PSO) is an efficient metaheuristic algorithm that has been successfully applied to obtain the optimal feature subset with essential information in an acceptable time. However, it is easy to fall into the local optima when dealing with high-dimensional datasets due to constant parameter values and insufficient population diversity. In the paper, an FS method is proposed by utilizing adaptive PSO with leadership learning (APSOLL). An adaptive updating strategy for parameters is used to replace the constant parameters, and the leadership learning strategy is utilized to provide valid population diversity. Experimental results on 10 UCI datasets show that APSOLL has better exploration and exploitation capabilities through comparison with PSO, grey wolf optimizer (GWO), Harris hawks optimization (HHO), flower pollination algorithm (FPA), salp swarm algorithm (SSA), linear PSO (LPSO), and hybrid PSO and differential evolution (HPSO-DE). Moreover, less than 8% of features in the original datasets are selected on average, and the feature subsets are more effective in most cases compared to those generated by 6 traditional FS methods (analysis of variance (ANOVA), Chi-Squared (CHI2), Pearson, Spearman, Kendall, and Mutual Information (MI)).

摘要

随着物联网(IoT)的快速发展,维度灾难变得越来越普遍。特征选择(FS)是消除数据集中不相关和冗余的特征。粒子群优化(PSO)是一种有效的元启发式算法,已成功应用于在可接受的时间内获得具有基本信息的最优特征子集。然而,由于常规模型值和种群多样性不足,在处理高维数据集时,它很容易陷入局部最优解。本文提出了一种利用领导学习的自适应粒子群优化(APSOLL)的 FS 方法。采用自适应参数更新策略来替代常规模型值,并利用领导学习策略来提供有效的种群多样性。通过与 PSO、灰狼优化算法(GWO)、哈里斯鹰优化算法(HHO)、花授粉算法(FPA)、沙鱼群算法(SSA)、线性 PSO(LPSO)和混合 PSO 和差分进化(HPSO-DE)的比较,实验结果表明 APSOLL 具有更好的探索和开发能力。此外,在原始数据集的特征中,平均选择不到 8%的特征,并且在大多数情况下,特征子集比 6 种传统 FS 方法(方差分析(ANOVA)、卡方(CHI2)、皮尔逊、斯皮尔曼、肯德尔和互信息(MI))生成的特征子集更有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff08/9441366/fa485e8a2222/CIN2022-1825341.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验