Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina.
CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina.
mBio. 2022 Oct 26;13(5):e0166322. doi: 10.1128/mbio.01663-22. Epub 2022 Sep 8.
Traditional studies on the evolution of antibiotic resistance development use approaches that can range from laboratory-based experimental studies, to epidemiological surveillance, to sequencing of clinical isolates. However, evolutionary trajectories also depend on the environment in which selection takes place, compelling the need to more deeply investigate the impact of environmental complexities and their dynamics over time. Herein, we explored the within-patient adaptive long-term evolution of a Pseudomonas aeruginosa hypermutator lineage in the airways of a cystic fibrosis (CF) patient by performing a chronological tracking of mutations that occurred in different subpopulations; our results demonstrated parallel evolution events in the chromosomally encoded class C β-lactamase (). These multiple mutations within shaped diverse coexisting alleles, whose frequency dynamics responded to the changing antibiotic selective pressures for more than 26 years of chronic infection. Importantly, the combination of the cumulative mutations in provided structural and functional protein changes that resulted in a continuous enhancement of its catalytic efficiency and high level of cephalosporin resistance. This evolution was linked to the persistent treatment with ceftazidime, which we demonstrated selected for variants with robust catalytic activity against this expanded-spectrum cephalosporin. A "gain of function" of collateral resistance toward ceftolozane, a more recently introduced cephalosporin that was not prescribed to this patient, was also observed, and the biochemical basis of this cross-resistance phenomenon was elucidated. This work unveils the evolutionary trajectories paved by bacteria toward a multidrug-resistant phenotype, driven by decades of antibiotic treatment in the natural CF environmental setting. Antibiotics are becoming increasingly ineffective to treat bacterial infections. It has been consequently predicted that infectious diseases will become the biggest challenge to human health in the near future. Pseudomonas aeruginosa is considered a paradigm in antimicrobial resistance as it exploits intrinsic and acquired resistance mechanisms to resist virtually all antibiotics known. AmpC β-lactamase is the main mechanism driving resistance in this notorious pathogen to β-lactams, one of the most widely used classes of antibiotics for cystic fibrosis infections. Here, we focus on the β-lactamase gene as a model resistance determinant and unveil the trajectory P. aeruginosa undertakes on the path toward a multidrug-resistant phenotype during the course of two and a half decades of chronic infection in the airways of a cystic fibrosis patient. Integrating genetic and biochemical studies in the natural environment where evolution occurs, we provide a unique perspective on this challenging landscape, addressing fundamental molecular mechanisms of resistance.
传统的抗生素耐药性发展演变研究采用的方法范围广泛,包括基于实验室的实验研究、流行病学监测以及临床分离株的测序。然而,进化轨迹也取决于选择发生的环境,这迫使我们更深入地研究环境复杂性及其随时间变化的动态的影响。在这里,我们通过对不同亚群中发生的突变进行时间追踪,探索了囊性纤维化(CF)患者气道中铜绿假单胞菌超突变株系的患者内适应性长期进化。我们的结果表明,染色体编码的 C 类β-内酰胺酶()中发生了平行进化事件。这些 内的多个突变形成了多样化共存的等位基因,其频率动态对超过 26 年慢性感染期间不断变化的抗生素选择压力做出了响应。重要的是, 中的累积突变提供了结构和功能上的蛋白变化,导致其催化效率不断提高,对头孢菌素的耐药性水平升高。这种进化与持续使用头孢他啶的治疗有关,我们证明这种治疗选择了对这种广谱头孢菌素具有强大催化活性的变体。还观察到对最近引入的头孢洛扎烷的“获得功能”的交叉耐药性,而该药物并未开给该患者,并且阐明了这种交叉耐药现象的生化基础。这项工作揭示了细菌在自然 CF 环境中几十年抗生素治疗驱动下,朝着多药耐药表型进化的轨迹。抗生素治疗细菌感染的效果越来越差。因此,有人预测,传染病将成为人类健康的最大挑战。铜绿假单胞菌被认为是抗生素耐药性的典范,因为它利用内在和获得性耐药机制来抵抗几乎所有已知的抗生素。AmpCβ-内酰胺酶是导致这种臭名昭著的病原体对β-内酰胺类抗生素(用于囊性纤维化感染的最广泛使用的抗生素之一)产生耐药性的主要机制。在这里,我们专注于β-内酰胺酶基因作为一个模型耐药决定因素,并揭示了铜绿假单胞菌在囊性纤维化患者气道中长达二十五年半的慢性感染过程中,在朝着多药耐药表型的道路上所经历的轨迹。通过在进化发生的自然环境中整合遗传和生化研究,我们为这一具有挑战性的领域提供了一个独特的视角,解决了耐药性的基本分子机制。