Martino Román A, Volke Daniel C, Tenaglia Albano H, Tribelli Paula M, Nikel Pablo I, Smania Andrea M
Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina.
CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina.
Microb Biotechnol. 2025 Apr;18(4):e70137. doi: 10.1111/1751-7915.70137.
The second messenger bis-(3' → 5')-cyclic dimeric guanosine monophosphate (c-di-GMP) governs adaptive responses in the opportunistic pathogen Pseudomonas aeruginosa, including biofilm formation and the transition from acute to chronic infections. Understanding the intricate c-di-GMP signalling network remains challenging due to the overlapping activities of numerous diguanylate cyclases (DGCs). In this study, we employed a CRISPR-based multiplex genome-editing tool to disrupt all 32 GGDEF domain-containing proteins (GCPs) implicated in c-di-GMP signalling in P. aeruginosa PA14. Phenotypic and physiological analyses revealed that the resulting mutant was unable to form biofilms and had attenuated virulence. Residual c-di-GMP levels were still detected despite the extensive GCP disruption, underscoring the robustness of this regulatory network. Taken together, these findings provide insights into the complex c-di-GMP metabolism and showcase the importance of functional overlapping in bacterial signalling. Moreover, our approach overcomes the native redundancy in c-di-GMP synthesis, providing a framework to dissect individual DGC functions and paving the way for targeted strategies to address bacterial adaptation and pathogenesis.
第二信使双(3'→5')-环二聚鸟苷单磷酸(c-di-GMP)调控着机会致病菌铜绿假单胞菌的适应性反应,包括生物膜形成以及从急性感染到慢性感染的转变。由于众多双鸟苷酸环化酶(DGC)的活性重叠,理解复杂的c-di-GMP信号网络仍然具有挑战性。在本研究中,我们采用了一种基于CRISPR的多重基因组编辑工具,以破坏铜绿假单胞菌PA14中与c-di-GMP信号传导相关的所有32种含GGDEF结构域的蛋白质(GCP)。表型和生理学分析表明,所得突变体无法形成生物膜且毒力减弱。尽管GCP被广泛破坏,但仍检测到残余的c-di-GMP水平,这突出了该调控网络的稳健性。综上所述,这些发现为复杂的c-di-GMP代谢提供了见解,并展示了细菌信号传导中功能重叠的重要性。此外,我们的方法克服了c-di-GMP合成中的天然冗余,为剖析单个DGC功能提供了框架,并为应对细菌适应性和致病性的靶向策略铺平了道路。