文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Genetic Dissection of Cyclic di-GMP Signalling in Pseudomonas aeruginosa via Systematic Diguanylate Cyclase Disruption.

作者信息

Martino Román A, Volke Daniel C, Tenaglia Albano H, Tribelli Paula M, Nikel Pablo I, Smania Andrea M

机构信息

Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica Ranwel Caputto, Córdoba, Argentina.

CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina.

出版信息

Microb Biotechnol. 2025 Apr;18(4):e70137. doi: 10.1111/1751-7915.70137.


DOI:10.1111/1751-7915.70137
PMID:40172309
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11963287/
Abstract

The second messenger bis-(3' → 5')-cyclic dimeric guanosine monophosphate (c-di-GMP) governs adaptive responses in the opportunistic pathogen Pseudomonas aeruginosa, including biofilm formation and the transition from acute to chronic infections. Understanding the intricate c-di-GMP signalling network remains challenging due to the overlapping activities of numerous diguanylate cyclases (DGCs). In this study, we employed a CRISPR-based multiplex genome-editing tool to disrupt all 32 GGDEF domain-containing proteins (GCPs) implicated in c-di-GMP signalling in P. aeruginosa PA14. Phenotypic and physiological analyses revealed that the resulting mutant was unable to form biofilms and had attenuated virulence. Residual c-di-GMP levels were still detected despite the extensive GCP disruption, underscoring the robustness of this regulatory network. Taken together, these findings provide insights into the complex c-di-GMP metabolism and showcase the importance of functional overlapping in bacterial signalling. Moreover, our approach overcomes the native redundancy in c-di-GMP synthesis, providing a framework to dissect individual DGC functions and paving the way for targeted strategies to address bacterial adaptation and pathogenesis.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ede/11963287/990bd5217d3d/MBT2-18-e70137-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ede/11963287/d096188e6262/MBT2-18-e70137-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ede/11963287/d25a93bb4d97/MBT2-18-e70137-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ede/11963287/df6e4a610deb/MBT2-18-e70137-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ede/11963287/e98dad584f3f/MBT2-18-e70137-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ede/11963287/b73b530845a6/MBT2-18-e70137-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ede/11963287/1910db6bc039/MBT2-18-e70137-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ede/11963287/0c0ef0c9f6ea/MBT2-18-e70137-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ede/11963287/990bd5217d3d/MBT2-18-e70137-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ede/11963287/d096188e6262/MBT2-18-e70137-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ede/11963287/d25a93bb4d97/MBT2-18-e70137-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ede/11963287/df6e4a610deb/MBT2-18-e70137-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ede/11963287/e98dad584f3f/MBT2-18-e70137-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ede/11963287/b73b530845a6/MBT2-18-e70137-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ede/11963287/1910db6bc039/MBT2-18-e70137-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ede/11963287/0c0ef0c9f6ea/MBT2-18-e70137-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ede/11963287/990bd5217d3d/MBT2-18-e70137-g009.jpg

相似文献

[1]
Genetic Dissection of Cyclic di-GMP Signalling in Pseudomonas aeruginosa via Systematic Diguanylate Cyclase Disruption.

Microb Biotechnol. 2025-4

[2]
Diguanylate Cyclases and Phosphodiesterases Required for Basal-Level c-di-GMP in as Revealed by Systematic Phylogenetic and Transcriptomic Analyses.

Appl Environ Microbiol. 2019-10-16

[3]
Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3'-5')-cyclic-GMP in virulence.

Proc Natl Acad Sci U S A. 2006-2-21

[4]
Evaluation and characterization of the predicted diguanylate cyclase-encoding genes in Pseudomonas aeruginosa.

Microbiologyopen. 2020-3

[5]
Diguanylate cyclase activity of the Mycobacterium leprae T cell antigen ML1419c.

Microbiology (Reading). 2016-9

[6]
Distinct strategies of diguanylate cyclase domain proteins on inhibition of virulence and interbacterial competition by agrobacteria.

mBio. 2025-5-14

[7]
More than Enzymes That Make or Break Cyclic Di-GMP-Local Signaling in the Interactome of GGDEF/EAL Domain Proteins of .

mBio. 2017-10-10

[8]
The Inhibitory Site of a Diguanylate Cyclase Is a Necessary Element for Interaction and Signaling with an Effector Protein.

J Bacteriol. 2016-5-13

[9]
The Pseudomonas aeruginosa diguanylate cyclase GcbA, a homolog of P. fluorescens GcbA, promotes initial attachment to surfaces, but not biofilm formation, via regulation of motility.

J Bacteriol. 2014-6-2

[10]
Multiple diguanylate cyclase-coordinated regulation of pyoverdine synthesis in Pseudomonas aeruginosa.

Environ Microbiol Rep. 2015-6

引用本文的文献

[1]
Updates on therapeutic targeting of diguanylate cyclase for addressing bacterial infections: A comprehensive review.

World J Microbiol Biotechnol. 2025-8-26

本文引用的文献

[1]
Multiple Chaperone DnaK-FliC Flagellin Interactions are Required for Pseudomonas aeruginosa Flagellum Assembly and Indicate a New Function for DnaK.

Microb Biotechnol. 2025-2

[2]
c-di-GMP phosphodiesterase ProE interacts with quorum sensing protein PqsE to promote pyocyanin production in .

mSphere. 2025-2-25

[3]
Microbes Saving Lives and Reducing Suffering.

Microb Biotechnol. 2025-1

[4]
Moonlighting antibiotics: the extra job of modulating biofilm formation.

Trends Microbiol. 2025-4

[5]
Multidrug-resistant Gram-negative bacterial infections.

Lancet. 2025-1-18

[6]
CIFR (Clone-Integrate-Flip-out-Repeat): A toolset for iterative genome and pathway engineering of Gram-negative bacteria.

Metab Eng. 2025-3

[7]
Automated in vivo enzyme engineering accelerates biocatalyst optimization.

Nat Commun. 2024-4-24

[8]
Flip the switch: the role of FleQ in modulating the transition between the free-living and sessile mode of growth in .

J Bacteriol. 2024-3-21

[9]
A Hitchhiker's guide to CRISPR editing tools in bacteria : CRISPR can help unlock the bacterial world, but technical and regulatory barriers persist.

EMBO Rep. 2024-4

[10]
The pAblo·pCasso self-curing vector toolset for unconstrained cytidine and adenine base-editing in Gram-negative bacteria.

Nucleic Acids Res. 2024-2-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索