文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Satelight:基于自注意力的多电极 EEG 癫痫棘波检测模型。

Satelight: self-attention-based model for epileptic spike detection from multi-electrode EEG.

机构信息

Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo, Japan.

Juntendo University Nerima Hospital, Nerima-ku, Tokyo, Japan.

出版信息

J Neural Eng. 2022 Sep 23;19(5). doi: 10.1088/1741-2552/ac9050.


DOI:10.1088/1741-2552/ac9050
PMID:36073896
Abstract

Because of the lack of highly skilled experts, automated technologies that support electroencephalogram (EEG)-based in epilepsy diagnosis are advancing. Deep convolutional neural network-based models have been used successfully for detecting epileptic spikes, one of the biomarkers, from EEG. However, a sizeable number of supervised EEG records are required for training.This study introduces the Satelight model, which uses the self-attention (SA) mechanism. The model was trained using a clinical EEG dataset labeled by five specialists, including 16 008 epileptic spikes and 15 478 artifacts from 50 children. The SA mechanism is expected to reduce the number of parameters and efficiently extract features from a small amount of EEG data. To validate the effectiveness, we compared various spike detection approaches with the clinical EEG data.The experimental results showed that the proposed method detected epileptic spikes more effectively than other models (accuracy = 0.876 and false positive rate = 0.133).The proposed model had only one-tenth the number of parameters as the other effective model, despite having such a high detection performance. Further exploration of the hidden parameters revealed that the model automatically attended to the EEG's characteristic waveform locations of interest.

摘要

由于缺乏高技能专家,支持基于脑电图 (EEG) 的癫痫诊断的自动化技术正在不断发展。基于深度卷积神经网络的模型已成功用于从 EEG 中检测癫痫发作的一种生物标志物——癫痫棘波。然而,训练需要大量有监督的 EEG 记录。本研究介绍了使用自注意力 (SA) 机制的 Satelight 模型。该模型使用由五名专家标记的临床 EEG 数据集进行训练,其中包括 50 名儿童的 16008 个癫痫棘波和 15478 个伪迹。SA 机制有望减少参数数量,并从少量 EEG 数据中高效提取特征。为了验证有效性,我们将各种棘波检测方法与临床 EEG 数据进行了比较。实验结果表明,与其他模型相比,该方法能更有效地检测出癫痫棘波(准确率=0.876,假阳性率=0.133)。尽管具有如此高的检测性能,但所提出的模型的参数数量仅是另一个有效模型的十分之一。进一步探索隐藏参数表明,该模型自动关注 EEG 中感兴趣的特征波形位置。

相似文献

[1]
Satelight: self-attention-based model for epileptic spike detection from multi-electrode EEG.

J Neural Eng. 2022-9-23

[2]
Multi-channel EEG epileptic spike detection by a new method of tensor decomposition.

J Neural Eng. 2020-1-6

[3]
Epileptic Spike Detection Using Neural Networks With Linear-Phase Convolutions.

IEEE J Biomed Health Inform. 2022-3

[4]
Automatic detection of epilepsy from EEGs using a temporal convolutional network with a self-attention layer.

Biomed Eng Online. 2024-6-1

[5]
Computer-assisted EEG diagnostic review for idiopathic generalized epilepsy.

Epilepsy Behav. 2021-8

[6]
DFAspike: a new computational proposition for efficient recognition of epileptic spike in EEG.

Comput Biol Med. 2011-5-28

[7]
Model-based spike detection of epileptic EEG data.

Sensors (Basel). 2013-9-17

[8]
Towards fast and reliable simultaneous EEG-fMRI analysis of epilepsy with automatic spike detection.

Clin Neurophysiol. 2018-12-17

[9]
A channel independent generalized seizure detection method for pediatric epileptic seizures.

Comput Methods Programs Biomed. 2021-9

[10]
Epileptic spike detection using a Kalman filter based approach.

Conf Proc IEEE Eng Med Biol Soc. 2006

引用本文的文献

[1]
Deep Learning Enhanced Label-Free Action Potential Detection Using Plasmonic-Based Electrochemical Impedance Microscopy.

Anal Chem. 2024-7-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索