Suppr超能文献

维生素 C 工业发酵系统中的微生物相互作用:新的见解和观点。

Microbial Interactions in a Vitamin C Industrial Fermentation System: Novel Insights and Perspectives.

机构信息

College of Bioscience and Biotechnology, Shenyang Agricultural Universitygrid.412557.0, Shenyang, Liaoning, China.

出版信息

Appl Environ Microbiol. 2022 Sep 22;88(18):e0121222. doi: 10.1128/aem.01212-22. Epub 2022 Sep 8.

Abstract

In industrial production, the precursor of l-ascorbic acid (L-AA, also referred to as vitamin C), 2-keto-l-gulonic acid (2-KLG), is mainly produced using a classic two-step fermentation process performed by Gluconobacter oxydans, Bacillus megaterium, and Ketogulonicigenium vulgare. In the second step of the two-step fermentation process, the microbial consortium of and B. megaterium is used to achieve 2-KLG production. can transform l-sorbose to 2-KLG, but the yield of 2-KLG is much lower in the monoculture than in the coculture fermentation system. The relationship between the two strains is too diverse to analyze and has been a hot topic in the field of vitamin C fermentation. With the development of omics technology, the relationships between the two strains are well explained; nevertheless, the cell-cell communication is unclear. In this review, based on current omics results, the interactions between the two strains are summarized, and the potential cell-cell communications between the two strains are discussed, which will shed a light on the further understanding of synthetic consortia.

摘要

在工业生产中,L-抗坏血酸(L-AA,也称为维生素 C)的前体 2-酮基-L-古龙酸(2-KLG)主要通过使用经典的两步发酵工艺生产,该工艺由氧化葡萄糖酸杆菌、巨大芽孢杆菌和黄色产碱杆菌完成。在两步发酵工艺的第二步中,使用 和 B. megaterium 的微生物共混物来实现 2-KLG 的生产。可以将 l-山梨糖转化为 2-KLG,但在单培养物中 2-KLG 的产量比共培养发酵系统中的产量低得多。这两个菌株之间的关系过于多样化,难以分析,一直是维生素 C 发酵领域的热门话题。随着组学技术的发展,这两个菌株之间的关系得到了很好的解释;然而,细胞间的通讯仍然不清楚。在这篇综述中,基于当前的组学结果,总结了这两个菌株之间的相互作用,并讨论了这两个菌株之间潜在的细胞间通讯,这将有助于进一步理解合成共混物。

相似文献

1
Microbial Interactions in a Vitamin C Industrial Fermentation System: Novel Insights and Perspectives.
Appl Environ Microbiol. 2022 Sep 22;88(18):e0121222. doi: 10.1128/aem.01212-22. Epub 2022 Sep 8.
2
Systematic characterization of sorbose/sorbosone dehydrogenases and sorbosone dehydrogenases from Ketogulonicigenium vulgare WSH-001.
J Biotechnol. 2019 Aug 10;301:24-34. doi: 10.1016/j.jbiotec.2019.05.010. Epub 2019 May 25.
4
Synthetic cell-cell communication in a three-species consortium for one-step vitamin C fermentation.
Biotechnol Lett. 2019 Sep;41(8-9):951-961. doi: 10.1007/s10529-019-02705-2. Epub 2019 Jul 5.
6
Siderophores of Bacillus pumilus promote 2-keto-L-gulonic acid production in a vitamin C microbial fermentation system.
J Basic Microbiol. 2022 Jul;62(7):833-842. doi: 10.1002/jobm.202200237. Epub 2022 May 29.
8
L-sorbose is not only a substrate for 2-keto-L-gulonic acid production in the artificial microbial ecosystem of two strains mixed fermentation.
J Ind Microbiol Biotechnol. 2015 Jun;42(6):897-904. doi: 10.1007/s10295-015-1616-7. Epub 2015 Apr 10.
10
Gelatin enhances 2-keto-L-gulonic acid production based on Ketogulonigenium vulgare genome annotation.
J Biotechnol. 2011 Dec 10;156(3):182-7. doi: 10.1016/j.jbiotec.2011.08.007. Epub 2011 Sep 8.

引用本文的文献

2
3
iTRAQ-based proteomics analysis of responses to acid stress and quorum sensing in a vitamin C fermentation system.
Front Microbiol. 2023 Mar 21;14:1131000. doi: 10.3389/fmicb.2023.1131000. eCollection 2023.

本文引用的文献

1
Siderophores of Bacillus pumilus promote 2-keto-L-gulonic acid production in a vitamin C microbial fermentation system.
J Basic Microbiol. 2022 Jul;62(7):833-842. doi: 10.1002/jobm.202200237. Epub 2022 May 29.
2
Construction of synthetic microbial consortia for 2-keto-L-gulonic acid biosynthesis.
Synth Syst Biotechnol. 2021 Dec 10;7(1):481-489. doi: 10.1016/j.synbio.2021.12.001. eCollection 2022 Mar.
3
Research progress of bacterial quorum sensing receptors: Classification, structure, function and characteristics.
Sci Total Environ. 2021 Apr 1;763:143031. doi: 10.1016/j.scitotenv.2020.143031. Epub 2020 Oct 20.
5
The membrane-bound sorbosone dehydrogenase of Gluconacetobacter liquefaciens is a pyrroloquinoline quinone-dependent enzyme.
Enzyme Microb Technol. 2020 Jun;137:109511. doi: 10.1016/j.enzmictec.2020.109511. Epub 2020 Jan 28.
7
Synthetic cell-cell communication in a three-species consortium for one-step vitamin C fermentation.
Biotechnol Lett. 2019 Sep;41(8-9):951-961. doi: 10.1007/s10529-019-02705-2. Epub 2019 Jul 5.
8
Systematic characterization of sorbose/sorbosone dehydrogenases and sorbosone dehydrogenases from Ketogulonicigenium vulgare WSH-001.
J Biotechnol. 2019 Aug 10;301:24-34. doi: 10.1016/j.jbiotec.2019.05.010. Epub 2019 May 25.
9
Metabolism of Dietary and Microbial Vitamin B Family in the Regulation of Host Immunity.
Front Nutr. 2019 Apr 17;6:48. doi: 10.3389/fnut.2019.00048. eCollection 2019.
10
Iron and sulfur oxidation pathways of Acidithiobacillus ferrooxidans.
World J Microbiol Biotechnol. 2019 Mar 27;35(4):60. doi: 10.1007/s11274-019-2632-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验