Suppr超能文献

RecT 影响铜绿假单胞菌噬菌体的生活方式和宿主核心细胞过程。

RecT Affects Prophage Lifestyle and Host Core Cellular Processes in Pseudomonas aeruginosa.

机构信息

College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai Universitygrid.216938.7, Tianjin, China.

School of Medicine, Nankai Universitygrid.216938.7, Tianjin, China.

出版信息

Appl Environ Microbiol. 2022 Sep 22;88(18):e0106822. doi: 10.1128/aem.01068-22. Epub 2022 Sep 8.

Abstract

Pseudomonas aeruginosa is a notorious pathogen that causes various nosocomial infections. Several prophage genes located on the chromosomes of P. aeruginosa have been reported to contribute to bacterial pathogenesis via host phenotype transformations, such as serotype conversion and antibiotic resistance. However, our understanding of the molecular mechanism behind host phenotype shifts induced by prophage genes remains largely unknown. Here, we report a systematic study around a hypothetical recombinase, Pg54 (RecT), located on a 48-kb putative prophage (designated PP9W) of a clinical P. aeruginosa strain P9W. Using a Δ mutant (designated P9D), we found that RecT promoted prophage PP9W excision and gene transcription via the inhibition of the gene expression level of , which encodes a CI-like repressor protein. Further transcriptomic profiling and various phenotypic tests showed that RecT modulated like a suppressor to some transcription factors and vital genes of diverse cellular processes, providing multiple advantages for the host, including cell growth, biofilm formation, and virulence. The versatile functions of RecT hint at a strong impact of phage proteins on host P. aeruginosa phenotypic flexibility. Multidrug-resistant and metabolically versatile P. aeruginosa are difficult to eradicate by anti-infective therapy and frequently lead to significant morbidity and mortality. This study characterizes a putative recombinase (RecT) encoded by a prophage of a clinical P. aeruginosa strain isolated from severely burned patients, altering prophage lifestyle and host core cellular processes. It implies the potential role of RecT in the coevolution arm race between bacteria and phage. The excised free phages from the chromosome of host bacteria can be used as weapons against other sensitive competitors in diverse environments, which may increase the lysogeny frequency of different P. aeruginosa subgroups. Subsequent analyses revealed that RecT both positively and negatively affects different phenotypic traits of the host. These findings concerning RecT functions of host phenotypic flexibility improve our understanding of the association between phage recombinases and clinical P. aeruginosa, providing new insight into mitigating the pathogen infection.

摘要

铜绿假单胞菌是一种臭名昭著的病原体,可引起各种医院获得性感染。据报道,位于铜绿假单胞菌染色体上的几个噬菌体基因通过宿主表型转化(如血清型转换和抗生素耐药性)促进细菌发病机制。然而,我们对噬菌体基因诱导的宿主表型变化的分子机制的理解在很大程度上仍然未知。在这里,我们报告了一项围绕位于临床铜绿假单胞菌菌株 P9W 的一个 48kb 假定噬菌体(命名为 PP9W)上的一个假设重组酶 Pg54(RecT)的系统研究。使用 Δ 突变体(命名为 P9D),我们发现 RecT 通过抑制编码 CI 样阻遏蛋白的基因表达水平,促进噬菌体 PP9W 的切除和基因转录。进一步的转录组分析和各种表型测试表明,RecT 作为一种抑制剂调节多种转录因子和各种细胞过程的重要基因的表达,为宿主提供了多种优势,包括细胞生长、生物膜形成和毒力。RecT 的多功能性暗示噬菌体蛋白对宿主铜绿假单胞菌表型灵活性有很强的影响。多药耐药和代谢多样的铜绿假单胞菌难以通过抗感染治疗根除,经常导致严重的发病率和死亡率。本研究描述了从严重烧伤患者中分离出的临床铜绿假单胞菌菌株的一个噬菌体编码的假定重组酶(RecT),改变了噬菌体的生活方式和宿主核心细胞过程。这暗示了 RecT 在细菌和噬菌体之间的共同进化军备竞赛中的潜在作用。从宿主细菌染色体上切除的游离噬菌体可以作为武器,在不同环境中对抗其他敏感的竞争者,这可能会增加不同铜绿假单胞菌亚群的溶原率。随后的分析表明,RecT 对宿主不同表型特征既有积极影响,也有消极影响。这些关于 RecT 对宿主表型灵活性的功能的发现,增进了我们对噬菌体重组酶与临床铜绿假单胞菌之间关联的理解,为减轻病原体感染提供了新的思路。

相似文献

1
RecT Affects Prophage Lifestyle and Host Core Cellular Processes in Pseudomonas aeruginosa.
Appl Environ Microbiol. 2022 Sep 22;88(18):e0106822. doi: 10.1128/aem.01068-22. Epub 2022 Sep 8.
2
Targeted deletion of Pf prophages from diverse isolates has differential impacts on quorum sensing and virulence traits.
J Bacteriol. 2024 May 23;206(5):e0040223. doi: 10.1128/jb.00402-23. Epub 2024 Apr 30.
3
A Novel XRE-Type Regulator Mediates Phage Lytic Development and Multiple Host Metabolic Processes in Pseudomonas aeruginosa.
Microbiol Spectr. 2022 Dec 21;10(6):e0351122. doi: 10.1128/spectrum.03511-22. Epub 2022 Nov 29.
4
Phage Morons Play an Important Role in Pseudomonas aeruginosa Phenotypes.
J Bacteriol. 2018 Oct 23;200(22). doi: 10.1128/JB.00189-18. Print 2018 Nov 15.
5
Diversity of Pseudomonas aeruginosa Temperate Phages.
mSphere. 2022 Feb 23;7(1):e0101521. doi: 10.1128/msphere.01015-21.
6
An Efficient, Counter-Selection-Based Method for Prophage Curing in Strains.
Viruses. 2021 Feb 21;13(2):336. doi: 10.3390/v13020336.
8
Control of lysogeny and antiphage defense by a prophage-encoded kinase-phosphatase module.
Nat Commun. 2024 Aug 23;15(1):7244. doi: 10.1038/s41467-024-51617-x.
9
Prophages mediate defense against phage infection through diverse mechanisms.
ISME J. 2016 Dec;10(12):2854-2866. doi: 10.1038/ismej.2016.79. Epub 2016 Jun 3.

引用本文的文献

2
A Novel XRE-Type Regulator Mediates Phage Lytic Development and Multiple Host Metabolic Processes in Pseudomonas aeruginosa.
Microbiol Spectr. 2022 Dec 21;10(6):e0351122. doi: 10.1128/spectrum.03511-22. Epub 2022 Nov 29.

本文引用的文献

1
Characterization and Application of a Lytic Phage D10 against Multidrug-Resistant .
Viruses. 2021 Aug 17;13(8):1626. doi: 10.3390/v13081626.
2
Flagella-Driven Motility of Bacteria.
Biomolecules. 2019 Jul 14;9(7):279. doi: 10.3390/biom9070279.
3
Prophage Hunter: an integrative hunting tool for active prophages.
Nucleic Acids Res. 2019 Jul 2;47(W1):W74-W80. doi: 10.1093/nar/gkz380.
4
The Diverse Impacts of Phage Morons on Bacterial Fitness and Virulence.
Adv Virus Res. 2019;103:1-31. doi: 10.1016/bs.aivir.2018.08.001. Epub 2018 Oct 3.
5
Excisionase in Pf filamentous prophage controls lysis-lysogeny decision-making in Pseudomonas aeruginosa.
Mol Microbiol. 2019 Feb;111(2):495-513. doi: 10.1111/mmi.14170. Epub 2018 Dec 12.
7
Phage Morons Play an Important Role in Pseudomonas aeruginosa Phenotypes.
J Bacteriol. 2018 Oct 23;200(22). doi: 10.1128/JB.00189-18. Print 2018 Nov 15.
8
Prophage Rs551 and Its Repressor Gene Reduce Virulence and Increase Competitive Fitness of Its Carrier Strain UW551.
Front Microbiol. 2017 Dec 22;8:2480. doi: 10.3389/fmicb.2017.02480. eCollection 2017.
9
Disabling a Type I-E CRISPR-Cas Nuclease with a Bacteriophage-Encoded Anti-CRISPR Protein.
mBio. 2017 Dec 12;8(6):e01751-17. doi: 10.1128/mBio.01751-17.
10
Ménage à trois in the human gut: interactions between host, bacteria and phages.
Nat Rev Microbiol. 2017 Jul;15(7):397-408. doi: 10.1038/nrmicro.2017.30. Epub 2017 May 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验