Suppr超能文献

通过 GC-MS、多光谱和分子对接方法探索猪肌原纤维蛋白与选定酮类之间的相互作用。

Exploration of interaction between porcine myofibrillar proteins and selected ketones by GC-MS, multiple spectroscopy, and molecular docking approaches.

机构信息

College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.

College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.

出版信息

Food Res Int. 2022 Oct;160:111624. doi: 10.1016/j.foodres.2022.111624. Epub 2022 Jul 6.

Abstract

Myofibrillar proteins (MPs) are the major components of meat and meat products, which can affect the flavour perception by interacting with volatile compounds. Therefore, the interaction between ketones (2-pentanone, 2-hexanone, and 2-heptanone) and porcine MPs was investigated in this work. The results showed that the binding ability of ketones to MPs was significantly enhanced with increasing protein concentration (p < 0.05); moreover, larger ketone carbon chains resulted in a stronger binding between MPs and ketones (p < 0.05). The MP-ketone interaction occurred through irreversible covalent binding and reversibly physicochemical binding, in which hydrophobic interactions may play a more predominant role. Furthermore, static and dynamic quenching occurred during the binding between MPs and ketones, leading to changes in the secondary structure and microenvironment of MPs. Finally, the results of molecular docking further confirmed that the hydrophobic interaction was the main driving force in the myosin-ketones systems. This work improves our understanding of the interaction mechanism between ketones and MPs at the molecular level.

摘要

肌原纤维蛋白(MPs)是肉和肉产品的主要成分,它可以通过与挥发性化合物相互作用来影响风味感知。因此,本研究考察了酮类(2-戊酮、2-己酮和 2-庚酮)与猪 MPs 之间的相互作用。结果表明,随着蛋白质浓度的增加,酮与 MPs 的结合能力显著增强(p<0.05);此外,较大的酮碳链导致 MPs 与酮之间的结合更强(p<0.05)。MP-酮相互作用通过不可逆的共价结合和可逆的物理化学结合发生,其中疏水相互作用可能起更主要的作用。此外,在 MPs 与酮之间的结合过程中发生了静态和动态猝灭,导致 MPs 的二级结构和微环境发生变化。最后,分子对接的结果进一步证实了疏水相互作用是肌球蛋白-酮体系的主要驱动力。这项工作提高了我们对酮类和 MPs 之间在分子水平上相互作用机制的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验