Suppr超能文献

过氧化氢诱导的氧化应激在耐辐射菌中获得链霉素抗性。

Acquisition of Streptomycin Resistance by Oxidative Stress Induced by Hydrogen Peroxide in Radiation-Resistant Bacterium .

机构信息

Department of Biology, Kyung Hee University, Seoul 02447, Korea.

出版信息

Int J Mol Sci. 2022 Aug 28;23(17):9764. doi: 10.3390/ijms23179764.

Abstract

Streptomycin is used primarily to treat bacterial infections, including brucellosis, plague, and tuberculosis. Streptomycin resistance easily develops in numerous bacteria through the inhibition of antibiotic transfer, the production of aminoglycoside-modifying enzymes, or mutations in ribosomal components with clinical doses of streptomycin treatment. (1) Background: A transposable insertion sequence is one of the mutation agents in bacterial genomes under oxidative stress. (2) Methods: In the radiation-resistant bacterium subjected to chronic oxidative stress induced by 20 mM hydrogen peroxide, active transposition of an insertion sequence element and several point mutations in three streptomycin resistance (SmR)-related genes (, , and ) were identified. (3) Results: IS of the IS family integrated into the gene (_2335), called S, encodes a ribosomal guanosine methyltransferase resulting in streptomycin resistance. In the case of _2840-disrupted mutant strains (S1 and S2), growth inhibition under antibiotic-free conditions was recovered with increased growth yields in the presence of 50 µg/mL streptomycin due to a streptomycin-dependent (SmD) mutation. These mutants have a predicted proline-to-leucine substitution at the 91st residue of ribosomal protein S12 in the decoding center. (4) Conclusions: Our findings show that the active transposition of a unique IS element under oxidative stress conditions conferred antibiotic resistance through the disruption of . Furthermore, chronic oxidative stress induced by hydrogen peroxide also induced streptomycin resistance caused by point and frameshift mutations of streptomycin-interacting residues such as K43, K88, and P91 in RpsL and four genes for streptomycin resistance.

摘要

链霉素主要用于治疗细菌感染,包括布鲁氏菌病、鼠疫和结核病。在临床剂量的链霉素治疗下,许多细菌通过抑制抗生素转移、产生氨基糖苷修饰酶或核糖体成分突变,很容易产生链霉素耐药性。(1)背景:转座插入序列是细菌基因组在氧化应激下的突变剂之一。(2)方法:在经 20mM 过氧化氢诱导的慢性氧化应激下的耐辐射菌中,鉴定出一个插入序列元件的活性转位和三个链霉素耐药(SmR)相关基因(、和)中的几个点突变。(3)结果:IS 家族的插入序列整合到基因(_2335)中,称为 S,编码一种核糖体鸟苷甲基转移酶,导致链霉素耐药。在_2840 缺失突变株(S1 和 S2)中,在无抗生素条件下的生长抑制通过在存在 50μg/mL 链霉素的情况下恢复,这是由于链霉素依赖性(SmD)突变。这些突变体在核糖体蛋白 S12 的解码中心第 91 位预测脯氨酸到亮氨酸的取代。(4)结论:我们的研究结果表明,在氧化应激条件下,一个独特的 IS 元件的活性转位通过破坏赋予抗生素耐药性。此外,过氧化氢引起的慢性氧化应激也诱导了链霉素相互作用残基(如 RpsL 中的 K43、K88 和 P91 以及四个链霉素耐药基因)的点突变和移码突变引起的链霉素耐药性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7be5/9456066/f3b24374c68e/ijms-23-09764-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验