Suppr超能文献

利用母体特征和胎儿生物测量参数建立的韩国妊娠期糖尿病妇女巨大儿预测模型。

A Predictive Model for Large-for-Gestational-Age Infants among Korean Women with Gestational Diabetes Mellitus Using Maternal Characteristics and Fetal Biometric Parameters.

作者信息

Kim Hee-Sun, Oh Soo-Young, Cho Geum Joon, Choi Suk-Joo, Hong Soon Cheol, Kwon Ja-Young, Kwon Han Sung

机构信息

Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Dongguk University Ilsan Hospital, Goyang 10326, Korea.

Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.

出版信息

J Clin Med. 2022 Aug 23;11(17):4951. doi: 10.3390/jcm11174951.

Abstract

BACKGROUND

With increasing incidence of gestational diabetes mellitus (GDM), newborn infants with perinatal morbidity, including large-for-gestational-age (LGA) or macrosomia, are also increasing. The purpose of this study was to develop a prediction model for LGA infants with GDM mothers.

METHODS

This was a retrospective case-control study of 660 women with GDM and singleton pregnancies in four tertiary care hospitals from 2006 to 2013 in Korea. Biometric parameters were obtained at diagnoses of GDM and within two weeks before delivery. These biometric data were all transformed retrospectively into Z-scores calculated using a reference. Interval changes of values between the two periods were obtained. Multivariable logistic and stepwise backwards regression analyses were performed to develop the most parsimonious predictive model. The prediction model included pre-pregnancy body mass index (BMI), head circumference (HC), Z-score at 24 + 0 to 30 + 6 weeks' gestation, and abdominal circumference (AC) Z-score at 34 + 0 to 41 + 6 weeks within 2 weeks before delivery. The developed model was then internally validated.

RESULTS

Our model's predictive performance (area under the curve (AUC): 0.925) was higher than estimated fetal weight (EFW) within two weeks before delivery (AUC: 0.744) and the interval change of EFW Z-score between the two periods (AUC: 0.874). It was internally validated (AUC: 0.916).

CONCLUSIONS

A clinical model was developed and internally validated to predict fetal overgrowth in Korean women with GDM, which showed a relatively good performance.

摘要

背景

随着妊娠期糖尿病(GDM)发病率的增加,患有围产期疾病的新生儿,包括大于胎龄儿(LGA)或巨大儿,也在增加。本研究的目的是建立一个针对患有GDM母亲的LGA婴儿的预测模型。

方法

这是一项回顾性病例对照研究,研究对象为2006年至2013年在韩国四家三级护理医院的660名患有GDM且为单胎妊娠的女性。在诊断GDM时以及分娩前两周内获取生物测量参数。这些生物测量数据均通过回顾性方式转换为使用参考值计算得出的Z评分。获取两个时期之间数值的间隔变化。进行多变量逻辑回归和逐步向后回归分析以建立最简约预测模型。预测模型包括孕前体重指数(BMI)、头围(HC)、妊娠24 + 0至30 + 6周时的Z评分以及分娩前两周内妊娠34 + 0至41 + 6周时的腹围(AC)Z评分。然后对所建立的模型进行内部验证。

结果

我们模型的预测性能(曲线下面积(AUC):0.925)高于分娩前两周内的估计胎儿体重(EFW)(AUC:0.744)以及两个时期之间EFW Z评分的间隔变化(AUC:0.874)。它经过内部验证(AUC:0.916)。

结论

开发并内部验证了一个临床模型,用于预测患有GDM的韩国女性胎儿过度生长情况,该模型表现出相对良好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/099a/9456704/df8ea5c2a197/jcm-11-04951-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验