Song Huadong, Wang Zijun, Zeng Yanli, Guo Xiaoting, Tang Chaoqing
SINOMACH Sensing Technology Co., Ltd., Shenyang 110043, China.
School of Artificial Intelligence and Automation, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
Materials (Basel). 2022 Aug 25;15(17):5874. doi: 10.3390/ma15175874.
Carbon fiber-reinforced polymer (CFRP) is a widely-used composite material that is vulnerable to impact damage. Light impact damages destroy the inner structure but barely show obvious change on the surface. As a non-contact and high-resolution method to detect subsurface and inner defect, near-field radiofrequency imaging (NRI) suffers from high imaging times. Although some existing works use compressed sensing (CS) for a faster measurement, the corresponding CS reconstruction time remains high. This paper proposes a deep learning-based CS method for fast NRI, this plugin method decreases the measurement time by one order of magnitude without hardware modification and achieves real-time imaging during CS reconstruction. A special 0/1-Bernoulli measurement matrix is designed for sensor scanning firstly, and an interpretable neural network-based CS reconstruction method is proposed. Besides real-time reconstruction, the proposed learning-based reconstruction method can further reduce the required data thus reducing measurement time more than existing CS methods. Under the same imaging quality, experimental results in an NRI system show the proposed method is 20 times faster than traditional raster scan and existing CS reconstruction methods, and the required data is reduced by more than 90% than existing CS reconstruction methods.
碳纤维增强聚合物(CFRP)是一种广泛使用的复合材料,容易受到冲击损伤。轻微的冲击损伤会破坏内部结构,但表面几乎没有明显变化。作为一种检测地下和内部缺陷的非接触式高分辨率方法,近场射频成像(NRI)存在成像时间长的问题。尽管现有一些工作使用压缩感知(CS)来加快测量速度,但相应的CS重建时间仍然很长。本文提出了一种基于深度学习的CS方法用于快速NRI,这种插件方法在不进行硬件修改的情况下将测量时间减少了一个数量级,并在CS重建过程中实现了实时成像。首先为传感器扫描设计了一种特殊的0/1 - 伯努利测量矩阵,并提出了一种基于可解释神经网络的CS重建方法。除了实时重建外,所提出的基于学习的重建方法还可以进一步减少所需数据,从而比现有CS方法更能减少测量时间。在相同成像质量下,NRI系统中的实验结果表明,所提出的方法比传统光栅扫描和现有CS重建方法快20倍,并且所需数据比现有CS重建方法减少了90%以上。