Suppr超能文献

冲击波挤压下NiAl金属间化合物的合成

Synthesis of NiAl Intermetallic Compound under Shock-Wave Extrusion.

作者信息

Malakhov Andrey, Shakhray Denis, Denisov Igor, Galiev Fanis, Seropyan Stepan

机构信息

Merzhanov Institute of Structural Macrokinetics and Materials Science of Russian Academy of Sciences, 142432 Chernogolovka, Russia.

Institute of Problems of Chemical Physics of Russian Academy of Sciences, 142432 Chernogolovka, Russia.

出版信息

Materials (Basel). 2022 Sep 1;15(17):6062. doi: 10.3390/ma15176062.

Abstract

This paper presents the implementation of the first stage of a study on the synthesis of the intermetallic compound in the Ni-Al system under shock-wave extrusion (SWE). A method was developed and experiments involving SWE of the reactive Ni-Al powder mixture were carried out. As a result, it was possible to obtain up to 56 vol.% of the final product and achieve 100% synthesis of NiAl. The results of metallographic analysis indicate that the process of high-velocity collapse of the tube created conditions for the formation of a cumulative flow, which directly affects the phase formation in NiAl. It was shown that the presence of the central hole in the powder sample reduced the effect of the Mach stem on the homogeneity of the NiAl structure. It was also determined that with a central hole with a 5 mm diameter, the effect of the Mach stem could not be observed at all. The goals of further studies are achieving 90-100 vol.% of the final product and reducing the porosity in the final product. Preliminary experimental studies have shown great potential for SWE to produce composite metal-intermetallic materials.

摘要

本文介绍了在冲击波挤压(SWE)条件下,镍铝(Ni-Al)体系金属间化合物合成研究第一阶段的实施情况。开发了一种方法,并对活性Ni-Al粉末混合物进行了冲击波挤压实验。结果表明,最终产物的体积分数可达56%,且实现了NiAl的100%合成。金相分析结果表明,管子的高速坍塌过程为形成累积流创造了条件,这直接影响了NiAl中的相形成。结果表明,粉末样品中中心孔的存在降低了马赫杆对NiAl结构均匀性的影响。还确定,对于直径为5mm的中心孔,根本观察不到马赫杆的影响。进一步研究的目标是使最终产物的体积分数达到90%-100%,并降低最终产物中的孔隙率。初步实验研究表明,冲击波挤压在生产复合金属间化合物材料方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/080c/9457517/a8b1e78ae589/materials-15-06062-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验