Suppr超能文献

基于有限元法的铝基纳米复合汽车盘式制动转子的热机械行为

Thermo-Mechanical Behavior of Aluminum Matrix Nano-Composite Automobile Disc Brake Rotor Using Finite Element Method.

作者信息

Sivaprakasam Palani, Abebe Esayas, Čep Robert, Elangovan Muniyandy

机构信息

Department of Mechanical Engineering, Addis Ababa Science and Technology University, Addis Ababa P.O. Box 16417, Ethiopia.

Department of Machining, Assembly and Engineering Metrology, Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, 708 00 Ostrava, Czech Republic.

出版信息

Materials (Basel). 2022 Sep 1;15(17):6072. doi: 10.3390/ma15176072.

Abstract

Analysis of mechanical and thermal behaviors during braking has become an increasingly important issue in many transport sectors for different modes of transportation. Brake failure generated during braking is a complex phenomenon confronting automobile manufacturers and designers. During braking, kinetic energy is transferred to thermal energy, resulting in the intense heating of disc brake rotors that increases proportionally with vehicle speed, mass, and braking frequency. It is essential to look into and improve strategies to make versatile, thermally resistant, lightweight, high-performance discs. As a result, this study uses the finite element method to conduct a thermo-mechanical analysis of aluminum alloy and aluminum matrix nano-composite disc brake rotors to address the abovementioned issues. The FEA method is used for the thermo-mechanical analysis of AMNCs for vented disc brake rotor during emergency braking at 70 km/h. From the results obtained, aluminum base metal matrix nano-composites have an excellent strength-to-weight ratio when used as disc brake rotor materials, significantly improving the discs' thermal and mechanical performance. From the result of transient thermal analysis, the maximum value of heat flux obtained for aluminum alloy disc is about 8 W/mm, whereas for AMNCs, the value is increased to 16.28 W/mm. The result from static analysis shows that the maximum deformation observed is 0.19 mm for aluminum alloy disc and 0.05 mm for AMNCs disc. In addition, the maximum von Mises stress value of AMNC disc is about 184 MPa. The maximum von Mises stress value of aluminum alloy disc is about 180 MPa. Therefore, according to the results, the proposed aluminum base metal matrix nano-composites are valid for replacing existing materials for disc brake rotor applications.

摘要

制动过程中的机械和热行为分析在许多运输领域对于不同运输方式而言已成为一个日益重要的问题。制动过程中产生的制动故障是汽车制造商和设计师面临的复杂现象。在制动过程中,动能转化为热能,导致盘式制动转子剧烈发热,发热程度与车速、质量和制动频率成正比。研究并改进制造通用、耐热、轻质、高性能制动盘的策略至关重要。因此,本研究使用有限元方法对铝合金和铝基纳米复合盘式制动转子进行热机械分析,以解决上述问题。有限元分析方法用于对通风盘式制动转子的铝基纳米复合材料在70公里/小时紧急制动时进行热机械分析。从获得的结果来看,铝基金属基纳米复合材料用作盘式制动转子材料时具有优异的强度重量比,显著提高了制动盘的热性能和机械性能。从瞬态热分析结果来看,铝合金制动盘获得的热流最大值约为8瓦/毫米,而铝基纳米复合材料的该值增加到16.28瓦/毫米。静态分析结果表明,观察到的铝合金制动盘最大变形为0.19毫米,铝基纳米复合材料制动盘为0.05毫米。此外,铝基纳米复合材料制动盘的最大冯·米塞斯应力值约为184兆帕。铝合金制动盘的最大冯·米塞斯应力值约为180兆帕。因此,根据结果,所提出的铝基金属基纳米复合材料对于替代现有盘式制动转子应用材料是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e841/9457784/4cb9815f9b59/materials-15-06072-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验