Suppr超能文献

整合连通性图谱与通路分析以预测植物提取物的药用特性——以L.为例的研究

Integration of the Connectivity Map and Pathway Analysis to Predict Plant Extract's Medicinal Properties-The Study Case of L.

作者信息

Gahramanov Valid, Oz Moria, Aouizerat Tzemach, Rosenzweig Tovit, Gorelick Jonathan, Drori Elyashiv, Salmon-Divon Mali, Sherman Michael Y, Lubin Bat Chen R

机构信息

Department of Molecular Biology, Ariel University, Ariel 40700, Israel.

Agriculture and Oenology Department, Eastern Regional R&D Center, Ariel 40700, Israel.

出版信息

Plants (Basel). 2022 Aug 24;11(17):2195. doi: 10.3390/plants11172195.

Abstract

Medicinal properties of plants are usually identified based on knowledge of traditional medicine or using low-throughput screens for specific pharmacological activities. The former is very biased since it requires prior knowledge of plants' properties, while the latter depends on a specific screening system and will miss medicinal activities not covered by the screen. We sought to enrich our understanding of the biological activities of L. root extract based on transcriptome changes to uncover a plurality of possible pharmacological effects without the need for prior knowledge or functional screening. We integrated Gene Set Enrichment Analysis of the RNAseq data to identify pathways affected by the treatment of cells with the extract and perturbational signatures in the CMAP database to enhance the validity of the results. Activities of signaling pathways were measured using immunoblotting with phospho-specific antibodies. Mitochondrial membrane potential was assessed using JC-1 staining. SARS-CoV-2-induced cell killing was assessed in Vero E6 and A549 cells using an MTT assay. Here, we identified transcriptome changes following exposure of cultured cells to the medicinal plant L. root extract. By integrating algorithms of GSEA and CMAP, we confirmed known anti-cancer activities of the extract and predicted novel biological effects on oxidative phosphorylation and interferon pathways. Experimental validation of these pathways uncovered strong activation of autophagy, including mitophagy, and excellent protection from SARS-CoV-2 infection. Our study shows that gene expression analysis alone is insufficient for predicting biological effects since some of the changes reflect compensatory effects, and additional biochemical tests provide necessary corrections. This study defines the advantages and limitations of transcriptome analysis in predicting the biological and medicinal effects of the L. extract. Such analysis could be used as a general approach for predicting the medicinal properties of plants.

摘要

植物的药用特性通常是基于传统医学知识或使用针对特定药理活性的低通量筛选来确定的。前者存在很大的偏差,因为它需要对植物特性有先验知识,而后者则依赖于特定的筛选系统,并且会错过该筛选未涵盖的药用活性。我们试图基于转录组变化来丰富对L.根提取物生物活性的理解,以揭示多种可能的药理作用,而无需先验知识或功能筛选。我们整合了RNAseq数据的基因集富集分析,以识别用该提取物处理细胞后受影响的通路,并整合了CMAP数据库中的扰动特征,以提高结果的有效性。使用磷酸特异性抗体进行免疫印迹来测量信号通路的活性。使用JC-1染色评估线粒体膜电位。使用MTT法在Vero E6和A549细胞中评估SARS-CoV-2诱导的细胞杀伤作用。在这里,我们确定了培养细胞暴露于药用植物L.根提取物后的转录组变化。通过整合GSEA和CMAP算法,我们证实了该提取物已知的抗癌活性,并预测了其对氧化磷酸化和干扰素通路的新生物效应。对这些通路的实验验证揭示了自噬(包括线粒体自噬)的强烈激活以及对SARS-CoV-2感染的出色保护作用。我们的研究表明,仅基因表达分析不足以预测生物效应,因为某些变化反映的是补偿效应,而额外的生化测试提供了必要的校正。这项研究定义了转录组分析在预测L.提取物的生物学和药用效应方面的优势和局限性。这种分析可作为预测植物药用特性的通用方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0a5/9460920/7c5637ee0076/plants-11-02195-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验