Suppr超能文献

超薄碳包覆多孔TiNbO纳米片作为用于增强锂存储的负极材料

Ultrathin Carbon-Coated Porous TiNbO Nanosheets as Anode Materials for Enhanced Lithium Storage.

作者信息

Liang Dewei, Lu Yu, Zhou Ningning, Xu Zezhong

机构信息

School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China.

出版信息

Nanomaterials (Basel). 2022 Aug 26;12(17):2943. doi: 10.3390/nano12172943.

Abstract

TiNbO has been considered as a promising anode material for next-generation high power lithium ion batteries for its relatively high theoretical capacity, excellent safety and long cycle life. However, the unsatisfactory electrochemical kinetics resulting from the intrinsic sluggish electron transport and lithium ion diffusion of TiNbO limit its wide application. Morphology controlling and carbon coating are two effective methods for improving the electrochemical performance of electrode materials. Herein, an ultrathin carbon-coated porous TiNbO nanosheet (TNO@C) is successfully fabricated by a simple and effective approach. The distinctive sheet-like porous structure can shorten the transport path of ions/electrons and provide more active sites for electrochemical reaction. The introduction of nanolayer carbon can improve electronic conductivity and increase the specific surface area of the porous TiNbO nanosheets. Based on the above synergistic effect, TiNbO@C delivers an initial discharge capacity of 250.6 mAh g under current density of 5C and can be maintained at 206.9 mAh g after 1000 cycles with a capacity retention of 82.6%, both of which are superior to that of pure TiNbO. These results well demonstrate that TiNbO@C is a promising anode material for lithium ion batteries.

摘要

TiNbO因其相对较高的理论容量、出色的安全性和长循环寿命,被认为是下一代高功率锂离子电池很有前景的负极材料。然而,TiNbO固有的缓慢电子传输和锂离子扩散导致的不理想的电化学动力学限制了其广泛应用。形貌控制和碳包覆是改善电极材料电化学性能的两种有效方法。在此,通过一种简单有效的方法成功制备了超薄碳包覆多孔TiNbO纳米片(TNO@C)。独特的片状多孔结构可以缩短离子/电子的传输路径,并为电化学反应提供更多活性位点。纳米层碳的引入可以提高电子导电性并增加多孔TiNbO纳米片的比表面积。基于上述协同效应,TiNbO@C在5C电流密度下的首次放电容量为250.6 mAh g,经过1000次循环后可保持在206.9 mAh g,容量保持率为82.6%,两者均优于纯TiNbO。这些结果充分证明TiNbO@C是一种很有前景的锂离子电池负极材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8071/9457728/ed0f1d945b20/nanomaterials-12-02943-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验