Blovský Tomáš, Šindelka Karel, Limpouchová Zuzana, Procházka Karel
The Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague 2, Czech Republic.
Department of Molecular and Mesoscopic Modelling, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v.v.i., Rozvojová 135/1, Suchdol, 165 02 Prague 6, Czech Republic.
Polymers (Basel). 2022 Sep 2;14(17):3634. doi: 10.3390/polym14173634.
This computer study was inspired by the experimental observation of Y. Qian et al. published in ACS Applied Materials and Interfaces, 2018 that the short positively charged -peptide chains and their oligomeric analogues efficiently suppress severe medical problems caused by antimicrobial drug-resistant bacteria despite them not penetrating the bacterial membrane. Our coarse-grained molecular dynamics (dissipative particle dynamics) simulations confirm the tentative explanation of the authors of the experimental study that the potent antimicrobial activity is a result of the entropically driven release of divalent ions (mainly magnesium ions essential for the proper biological function of bacteria) into bulk solution upon the electrostatic binding of -peptides to the bacterial membrane. The study shows that in solutions containing cations Na, Ca and Mg, and anions Cl, the divalent cations preferentially concentrate close to the membrane and neutralize the negative charge. Upon the addition of positively charged oligomer chains (models of -peptides and their analogues), the oligomers electrostatically bind to the membrane replacing divalent ions, which are released into bulk solvent. Our simulations indicate that the entropy of small ions (which controls the behavior of synthetic polyelectrolyte solutions) plays an important role in this and also in other similar biologically important systems.
这项计算机研究受到了钱逸等人于2018年发表在《美国化学会应用材料与界面》上的实验观察结果的启发。该实验观察表明,尽管短的带正电荷的肽链及其寡聚类似物没有穿透细菌膜,但它们能有效抑制由耐抗菌药物细菌引起的严重医学问题。我们的粗粒度分子动力学(耗散粒子动力学)模拟证实了实验研究作者的初步解释,即强大的抗菌活性是由于肽与细菌膜发生静电结合后,二价离子(主要是对细菌正常生物学功能至关重要的镁离子)在熵驱动下释放到本体溶液中的结果。研究表明,在含有阳离子Na、Ca和Mg以及阴离子Cl的溶液中,二价阳离子优先聚集在膜附近并中和负电荷。加入带正电荷的寡聚物链(肽及其类似物的模型)后,寡聚物通过静电作用与膜结合,取代二价离子,这些离子被释放到本体溶剂中。我们的模拟表明,小离子的熵(它控制着合成聚电解质溶液的行为)在这一过程以及其他类似的具有生物学重要性的系统中都起着重要作用。