The School of Automation, Central South University, Changsha 410083, China.
Beijing Institute of Automation Equipment, Beijing 100074, China.
Sensors (Basel). 2022 Aug 25;22(17):6414. doi: 10.3390/s22176414.
The depth completion task aims to generate a dense depth map from a sparse depth map and the corresponding RGB image. As a data preprocessing task, obtaining denser depth maps without affecting the real-time performance of downstream tasks is the challenge. In this paper, we propose a lightweight depth completion network based on secondary guidance and spatial fusion named SGSNet. We design the image feature extraction module to better extract features from different scales between and within layers in parallel and to generate guidance features. Then, SGSNet uses the secondary guidance to complete the depth completion. The first guidance uses the lightweight guidance module to quickly guide LiDAR feature extraction with the texture features of RGB images. The second guidance uses the depth information completion module for sparse depth map feature completion and inputs it into the DA-CSPN++ module to complete the dense depth map re-guidance. By using a lightweight bootstrap module, the overall network runs ten times faster than the baseline. The overall network is relatively lightweight, up to thirty frames, which is sufficient to meet the speed needs of large SLAM and three-dimensional reconstruction for sensor data extraction. At the time of submission, the accuracy of the algorithm in SGSNet ranked first in the KITTI ranking of lightweight depth completion methods. It was 37.5% faster than the top published algorithms in the rank and was second in the full ranking.
深度补全任务旨在从稀疏深度图和相应的 RGB 图像生成密集的深度图。作为数据预处理任务,在不影响下游任务实时性能的情况下获得更密集的深度图是一个挑战。在本文中,我们提出了一种基于二次引导和空间融合的轻量级深度补全网络,称为 SGSNet。我们设计了图像特征提取模块,以便更好地从不同尺度的层间和层内并行提取特征,并生成引导特征。然后,SGSNet 使用二次引导来完成深度补全。第一次引导使用轻量级引导模块,快速引导 LiDAR 特征提取,同时利用 RGB 图像的纹理特征。第二次引导使用稀疏深度图特征补全的深度信息补全模块,并将其输入到 DA-CSPN++模块中,以完成密集深度图的重新引导。通过使用轻量级引导模块,整个网络的运行速度比基线快十倍。整个网络相对较轻量级,最高可达三十帧,足以满足传感器数据提取的大型 SLAM 和三维重建的速度需求。在提交时,算法在 SGSNet 中的准确性在轻量级深度补全方法的 KITTI 排名中排名第一,比排名中发布的最高算法快 37.5%,在总排名中排名第二。