Suppr超能文献

基于带注意力机制的批量归一化图卷积神经网络的地震数据地震预测预警系统(BNGCNNATT)。

An Early Warning System for Earthquake Prediction from Seismic Data Using Batch Normalized Graph Convolutional Neural Network with Attention Mechanism (BNGCNNATT).

机构信息

College of Instrumentation & Electrical Engineering, Jilin University, Changchun 130061, China.

College of Geoexploration Science & Technology, Jilin University, Changchun 130061, China.

出版信息

Sensors (Basel). 2022 Aug 28;22(17):6482. doi: 10.3390/s22176482.

Abstract

Earthquakes threaten people, homes, and infrastructure. Early warning systems provide prior warning of oncoming significant shaking to decrease seismic risk by providing location, magnitude, and depth information of the event. Their usefulness depends on how soon a strong shake begins after the warning. In this article, the authors implement a deep learning model for predicting earthquakes. This model is based on a graph convolutional neural network with batch normalization and attention mechanism techniques that can successfully predict the depth and magnitude of an earthquake event at any number of seismic stations in any number of locations. After preprocessing the waveform data, CNN extracts the feature map. Attention mechanism is used to focus on important features. The batch normalization technique takes place in batches for stable and faster training of the model by adding an extra layer. GNN with extracted features and event location information predicts the event information accurately. We test the proposed model on two datasets from Japan and Alaska, which have different seismic dynamics. The proposed model achieves 2.8 and 4.0 RMSE values in Alaska and Japan for magnitude prediction, and 2.87 and 2.66 RMSE values for depth prediction. Low RMSE values show that the proposed model significantly outperforms the three baseline models on both datasets to provide an accurate estimation of the depth and magnitude of small, medium, and large-magnitude events.

摘要

地震威胁着人们、家庭和基础设施。预警系统通过提供事件的位置、震级和深度信息,为即将到来的强烈震动提供预先警告,从而降低地震风险。它们的有用性取决于在发出警告后多久会发生强烈震动。在本文中,作者实现了一种用于预测地震的深度学习模型。该模型基于具有批量归一化和注意力机制技术的图卷积神经网络,可以成功预测任何数量的地震台站在任何位置的地震事件的深度和震级。在对波形数据进行预处理后,CNN 提取特征图。注意力机制用于关注重要特征。批量归一化技术在批量中进行,通过添加额外的层,使模型的训练更加稳定和快速。具有提取特征和事件位置信息的 GNN 可以准确地预测事件信息。我们在来自日本和阿拉斯加的两个数据集上测试了所提出的模型,这两个数据集具有不同的地震动态。所提出的模型在阿拉斯加和日本的震级预测中分别取得了 2.8 和 4.0 的 RMSE 值,在深度预测中分别取得了 2.87 和 2.66 的 RMSE 值。低 RMSE 值表明,所提出的模型在两个数据集上都明显优于三个基线模型,能够对小、中、大震级事件的深度和震级进行准确估计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17ac/9460498/09d738d52859/sensors-22-06482-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验