Suppr超能文献

PassTCN-PPLL:一种基于概率标签学习和时间卷积神经网络的密码猜测模型。

PassTCN-PPLL: A Password Guessing Model Based on Probability Label Learning and Temporal Convolutional Neural Network.

机构信息

Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.

University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Sensors (Basel). 2022 Aug 29;22(17):6484. doi: 10.3390/s22176484.

Abstract

The frequent incidents of password leakage have increased people's attention and research on password security. Password guessing is an essential part of password cracking and password security research. The progression of deep learning technology provides a promising way to improve the efficiency of password guessing. However, the mainstream models proposed for password guessing, such as RNN (or other variants, such as LSTM, GRU), GAN and VAE still face some problems, such as the low efficiency and high repetition rate of the generated passwords. In this paper, we propose a password-guessing model based on the temporal convolutional neural network (PassTCN). To further improve the performance of the generated passwords, we propose a novel password probability label-learning method, which reconstructs labels based on the password probability distribution of the training set and deduplicates the training set when training. Experiments on the RockYou dataset showed that, when generating 108 passwords, the coverage rate of PassTCN with password probability label learning (PassTCN-PPLL) reached 12.6%, which is 87.2%, 72.6% and 42.9% higher than PassGAN (a password-guessing model based on GAN), VAEPass (a password-guessing model based on VAE) and FLA (a password-guessing model based on LSTM), respectively. The repetition rate of our model is 25.9%, which is 45.1%, 31.7% and 17.4% lower than that of PassGAN, VAEPass and FLA, respectively. The results confirm that our approach not only improves the coverage rate but also reduces the repetition rate.

摘要

密码泄露事件频发,增加了人们对密码安全的关注和研究。密码猜测是密码破解和密码安全研究的重要组成部分。深度学习技术的发展为提高密码猜测的效率提供了一种有前途的方法。然而,目前主流的密码猜测模型,如 RNN(或其他变体,如 LSTM、GRU)、GAN 和 VAE 等,仍然存在一些问题,例如生成的密码效率低、重复率高。在本文中,我们提出了一种基于时间卷积神经网络(PassTCN)的密码猜测模型。为了进一步提高生成密码的性能,我们提出了一种新颖的密码概率标签学习方法,该方法基于训练集的密码概率分布对标签进行重构,并在训练时对训练集进行去重。在 RockYou 数据集上的实验表明,在生成 108 个密码时,带有密码概率标签学习的 PassTCN(PassTCN-PPLL)的覆盖率达到了 12.6%,分别比基于 GAN 的密码猜测模型 PassGAN、基于 VAE 的密码猜测模型 VAEPass 和基于 LSTM 的密码猜测模型 FLA 高出 87.2%、72.6%和 42.9%。我们模型的重复率为 25.9%,分别比 PassGAN、VAEPass 和 FLA 低 45.1%、31.7%和 17.4%。结果证实,我们的方法不仅提高了覆盖率,还降低了重复率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/447f/9459998/aa83a17db557/sensors-22-06484-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验