Suppr超能文献

基于响应行为分析的改进全卷积孪生网络的视觉目标跟踪

Improved Fully Convolutional Siamese Networks for Visual Object Tracking Based on Response Behaviour Analysis.

机构信息

Scientific Research Post, Suzhou Institute of Metrology, Suzhou 215128, China.

College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China.

出版信息

Sensors (Basel). 2022 Aug 30;22(17):6550. doi: 10.3390/s22176550.

Abstract

Siamese networks have recently attracted significant attention in the visual tracking community due to their balanced accuracy and speed. However, as a result of the non-update of the appearance model and the changing appearance of the target, the problem of tracking drift is a regular occurrence, particularly in background clutter scenarios. As a means of addressing this problem, this paper proposes an improved fully convolutional Siamese tracker that is based on response behaviour analysis (SiamFC-RBA). Firstly, the response map of the SiamFC is normalised to an 8-bit grey image, and the isohypse contours that represent the candidate target region are generated through thresholding. Secondly, the dynamic behaviour of the contours is analysed in order to check if there are distractors approaching the tracked target. Finally, a peak switching strategy is used as a means of determining the real tracking position of all candidates. Extensive experiments conducted on visual tracking benchmarks, including OTB100, GOT-10k and LaSOT, demonstrated that the proposed tracker outperformed the compared trackers such as DaSiamRPN, SiamRPN, SiamFC, CSK, CFNet and Staple and achieved state-of-the-art performance. In addition, the response behaviour analysis module was embedded into DiMP, with the experimental results showing the performance of the tracker to be improved through the use of the proposed architecture.

摘要

孪生网络由于其平衡的准确性和速度,最近在视觉跟踪社区引起了极大的关注。然而,由于外观模型的不更新和目标外观的变化,跟踪漂移的问题经常发生,特别是在背景杂乱的场景中。针对这个问题,本文提出了一种改进的完全卷积孪生跟踪器,它基于响应行为分析(SiamFC-RBA)。首先,将 SiamFC 的响应图归一化为 8 位灰度图像,并通过阈值处理生成表示候选目标区域的等势线轮廓。其次,分析轮廓的动态行为,以检查是否有干扰物接近跟踪目标。最后,采用峰值切换策略来确定所有候选者的真实跟踪位置。在视觉跟踪基准测试(包括 OTB100、GOT-10k 和 LaSOT)上进行的广泛实验表明,所提出的跟踪器优于 DaSiamRPN、SiamRPN、SiamFC、CSK、CFNet 和 Staple 等比较跟踪器,达到了最新水平。此外,将响应行为分析模块嵌入到 DiMP 中,实验结果表明,通过使用所提出的架构可以提高跟踪器的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6b7/9460916/cb771c8c3c02/sensors-22-06550-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验