Suppr超能文献

基于重构补丁变换跟踪的鲁棒视觉跟踪方法。

A Robust Visual Tracking Method Based on Reconstruction Patch Transformer Tracking.

机构信息

College of Information Science and Engineering, Linyi University, Linyi 276000, China.

School of Physics and Electronic Engineering, Linyi University, Linyi 276005, China.

出版信息

Sensors (Basel). 2022 Aug 31;22(17):6558. doi: 10.3390/s22176558.

Abstract

Recently, the transformer model has progressed from the field of visual classification to target tracking. Its primary method replaces the cross-correlation operation in the Siamese tracker. The backbone of the network is still a convolutional neural network (CNN). However, the existing transformer-based tracker simply deforms the features extracted by the CNN into patches and feeds them into the transformer encoder. Each patch contains a single element of the spatial dimension of the extracted features and inputs into the transformer structure to use cross-attention instead of cross-correlation operations. This paper proposes a reconstruction patch strategy which combines the extracted features with multiple elements of the spatial dimension into a new patch. The reconstruction operation has the following advantages: (1) the correlation between adjacent elements combines well, and the features extracted by the CNN are usable for classification and regression; (2) using the performer operation reduces the amount of network computation and the dimension of the patch sent to the transformer, thereby sharply reducing the network parameters and improving the model-tracking speed.

摘要

最近,Transformer 模型已经从视觉分类领域发展到目标跟踪领域。其主要方法是取代了孪生跟踪器中的互相关操作。网络的主干仍然是卷积神经网络(CNN)。然而,现有的基于 Transformer 的跟踪器只是将 CNN 提取的特征变形为补丁,并将其输入到 Transformer 编码器中。每个补丁仅包含提取特征的空间维度的单个元素,并输入到 Transformer 结构中,以使用交叉注意代替互相关操作。本文提出了一种重建补丁策略,该策略将提取的特征与空间维度的多个元素组合成一个新的补丁。重建操作具有以下优点:(1)相邻元素之间的相关性很好地结合在一起,CNN 提取的特征可用于分类和回归;(2)使用性能器操作减少了网络计算量和发送到 Transformer 的补丁维度,从而大大减少了网络参数并提高了模型跟踪速度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49ff/9460596/b7b74f4ec259/sensors-22-06558-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验