Suppr超能文献

基于群组稀疏性的视频传感器被遮挡行人属性识别。

Occluded Pedestrian-Attribute Recognition for Video Sensors Using Group Sparsity.

机构信息

College of Information Technology, Gachon University, Sengnam 13120, Korea.

Artificial Intelligence Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon 34129, Korea.

出版信息

Sensors (Basel). 2022 Sep 1;22(17):6626. doi: 10.3390/s22176626.

Abstract

Pedestrians are often obstructed by other objects or people in real-world vision sensors. These obstacles make pedestrian-attribute recognition (PAR) difficult; hence, occlusion processing for visual sensing is a key issue in PAR. To address this problem, we first formulate the identification of non-occluded frames as temporal attention based on the sparsity of a crowded video. In other words, a model for PAR is guided to prevent paying attention to the occluded frame. However, we deduced that this approach cannot include a correlation between attributes when occlusion occurs. For example, "boots" and "shoe color" cannot be recognized simultaneously when the foot is invisible. To address the uncorrelated attention issue, we propose a novel temporal-attention module based on group sparsity. Group sparsity is applied across attention weights in correlated attributes. Accordingly, physically-adjacent pedestrian attributes are grouped, and the attention weights of a group are forced to focus on the same frames. Experimental results indicate that the proposed method achieved 1.18% and 6.21% higher F1-scores than the advanced baseline method on the occlusion samples in DukeMTMC-VideoReID and MARS video-based PAR datasets, respectively.

摘要

行人在现实世界的视觉传感器中经常会被其他物体或人挡住。这些障碍物使得行人属性识别 (PAR) 变得困难;因此,视觉传感器的遮挡处理是 PAR 的一个关键问题。为了解决这个问题,我们首先根据拥挤视频的稀疏性,将未遮挡帧的识别形式化为基于时间的注意力。换句话说,PAR 模型被引导以防止关注遮挡帧。然而,我们推断出,当发生遮挡时,这种方法不能包含属性之间的相关性。例如,当脚部不可见时,“靴子”和“鞋的颜色”无法同时被识别。为了解决不相关注意力的问题,我们提出了一种基于组稀疏性的新的时间注意力模块。组稀疏性应用于相关属性的注意力权重中。因此,将物理上相邻的行人属性分组,并迫使组的注意力权重集中在同一帧上。实验结果表明,在 DukeMTMC-VideoReID 和 MARS 基于视频的 PAR 数据集的遮挡样本上,与先进的基线方法相比,所提出的方法的 F1 分数分别提高了 1.18%和 6.21%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3185/9460213/57df4701e2ed/sensors-22-06626-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验