利用各向异性颗粒形状,以高产率和高纯度静电组装胶体分子。
Exploiting anisotropic particle shape to electrostatically assemble colloidal molecules with high yield and purity.
机构信息
Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO Box 9504, 2300 RA Leiden, the Netherlands.
Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, the Netherlands.
出版信息
J Colloid Interface Sci. 2023 Jan;629(Pt A):322-333. doi: 10.1016/j.jcis.2022.08.158. Epub 2022 Aug 29.
HYPOTHESIS
Colloidal molecules with anisotropic shapes and interactions are powerful model systems for deciphering the behavior of real molecules and building units for creating materials with designed properties. While many strategies for their assembly have been developed, they typically yield a broad distribution or are limited to a specific type. We hypothesize that the shape and relative sizes of colloidal particles can be exploited to efficiently direct their assembly into colloidal molecules of desired valence.
EXPERIMENTS
We exploit electrostatic self-assembly of negatively charged spheres made from either polystyrene or silica onto positively charged hematite cubes. We thoroughly analyze the role of the shape and size ratio of particles on the cluster size and yield of colloidal molecules.
FINDINGS
Using a combination of experiments and simulations, we demonstrate that cubic particle shape is crucial to generate high yields of distinct colloidal molecules over a wide variety of size ratios. We find that electrostatic repulsion between the satellite spheres is important to leverage the templating effect of the cubes, leading the spheres to preferentially assemble on the facets rather than the edges and corners of the cube. The sixfold symmetry of cubes favors the assembly of molecules with six, four, and two satellite spheres at appropriate size ratios and interaction strength. Furthermore, we reveal that our protocol is not affected by the specific choice of the material of the colloidal particles. Finally, we show that the permanent magnetic dipole moment of the hematite cubes can be utilized to separate colloidal molecules from non-assembled satellite particles. Our simple and effective strategy might be extended to other templating particle shapes, thereby greatly expanding the library of colloidal molecules that can be achieved with high yield and purity.
假设
具有各向异性形状和相互作用的胶体分子是破译真实分子行为和构建具有设计性能的材料单元的强大模型系统。虽然已经开发出许多用于它们组装的策略,但它们通常会产生广泛的分布或仅限于特定类型。我们假设胶体粒子的形状和相对大小可以被利用来有效地指导它们自组装成所需价态的胶体分子。
实验
我们利用带负电荷的聚苯乙烯或二氧化硅球体与带正电荷的赤铁矿立方体之间的静电自组装。我们彻底分析了粒子的形状和尺寸比对簇大小和胶体分子产率的影响。
发现
我们使用实验和模拟的组合,证明了立方体形对于在广泛的尺寸比范围内生成高产量的不同胶体分子至关重要。我们发现卫星球体之间的静电排斥对于利用立方体的模板效应很重要,这导致球体优先在立方体的面而不是边缘和角上组装。立方体的六重对称性有利于在适当的尺寸比和相互作用强度下组装具有六个、四个和两个卫星球体的分子。此外,我们揭示了我们的方案不受胶体粒子材料的具体选择的影响。最后,我们表明赤铁矿立方体的永久磁偶极矩可用于从未组装的卫星粒子中分离胶体分子。我们简单有效的策略可以扩展到其他模板粒子形状,从而大大扩展可以高产率和高纯度获得的胶体分子库。