Suppr超能文献

胶体世界中的分子识别。

Molecular Recognition in the Colloidal World.

机构信息

Molecular Design Institute and Department of Chemistry, New York University , New York, New York 10003-6688, United States.

Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802-1503, United States.

出版信息

Acc Chem Res. 2017 Nov 21;50(11):2756-2766. doi: 10.1021/acs.accounts.7b00370. Epub 2017 Oct 6.

Abstract

Colloidal self-assembly is a bottom-up technique to fabricate functional nanomaterials, with paramount interest stemming from programmable assembly of smaller building blocks into dynamic crystalline domains and photonic materials. Multiple established colloidal platforms feature diverse shapes and bonding interactions, while achieving specific orientations along with short- and long-range order. A major impediment to their universal use as building blocks for predesigned architectures is the inability to precisely dictate and control particle functionalization and concomitant reversible self-assembly. Progress in colloidal self-assembly necessitates the development of strategies that endow bonding specificity and directionality within assemblies. Methodologies that emulate molecular and polymeric three-dimensional (3D) architectures feature elements of covalent bonding, while high-fidelity molecular recognition events have been installed to realize responsive reconfigurable assemblies. The emergence of anisotropic 'colloidal molecules', coupled with the ability to site-specifically decorate particle surfaces with supramolecular recognition motifs, has facilitated the formation of superstructures via directional interactions and shape recognition. In this Account, we describe supramolecular assembly routes to drive colloidal particles into precisely assembled architectures or crystalline lattices via directional noncovalent molecular interactions. The design principles are based upon the fabrication of colloidal particles bearing surface-exposed functional groups that can undergo programmable conjugation to install recognition motifs with high fidelity. Modular and versatile by design, our strategy allows for the introduction and integration of molecular recognition principles into the colloidal world. We define noncovalent molecular interactions as site-specific forces that are predictable (i.e., feature selective and controllable complementary bonding partners) and can engage in tunable high-fidelity interactions. Examples include metal coordination and host-guest interactions as well as hydrogen bonding and DNA hybridization. On the colloidal scale, these interactions can be used to drive the reversible formation of open structures. Key to the design is the ability to covalently conjugate supramolecular motifs onto the particle surface and/or noncovalently associate with small molecules that can mediate and direct assembly. Efforts exploiting the binding strength inherent to DNA hybridization for the preparation of reversible open-packed structures are then detailed. We describe strategies that led to the introduction of dual-responsive DNA-mediated orthogonal assembly as well as colloidal clusters that afford distinct DNA-ligated close-packed lattices. Further focus is placed on two essential and related efforts: the engineering of complex superstructures that undergo phase transitions and colloidal crystals featuring a high density of functional anchors that aid in crystallization. The design principles discussed in this Account highlight the synergy stemming from coupling well-established noncovalent interactions common on the molecular and polymeric length scales with colloidal platforms to engineer reconfigurable functional architectures by design. Directional strategies and methods such as those illustrated herein feature molecular control and dynamic assembly that afford both open-packed 1D and 2D lattices and are amenable to 3D colloidal frameworks. Multiple methods to direct colloidal assembly have been reported, yet few are capable of crystallizing 2D and 3D architectures of interest for optical data storage, electronics, and photonics. Indeed, early implications are that [supra]molecular control over colloidal assembly can fabricate rationally structured designer materials from simple fundamental building blocks.

摘要

胶体自组装是一种自下而上的方法,用于制造功能性纳米材料,其主要兴趣源于将较小的构建块可编程组装成动态晶体域和光子材料。多种已建立的胶体平台具有不同的形状和键合相互作用,同时实现了特定的取向以及短程和长程有序。将其作为预定结构的构建块普遍使用的主要障碍是无法精确地规定和控制颗粒功能化和伴随的可逆自组装。胶体自组装的进展需要开发赋予组装体键合特异性和方向性的策略。模拟分子和聚合物三维(3D)结构的方法具有共价键的特征,而已经安装了高保真分子识别事件以实现响应性可重构组装。各向异性“胶体分子”的出现,加上在颗粒表面上通过超分子识别基元进行位点特异性装饰的能力,通过定向相互作用和形状识别促进了超结构的形成。在本报告中,我们描述了超分子组装途径,通过定向非共价分子相互作用将胶体颗粒驱动成精确组装的结构或晶体格子。设计原则基于制造具有表面暴露的功能基团的胶体颗粒,这些功能基团可以通过可编程缀合来以高保真度安装识别基元。我们的策略设计灵活且通用,允许将分子识别原理引入胶体世界。我们将非共价分子相互作用定义为可预测的(即具有选择性和可控的互补键合伙伴)的特异性位点力,并且可以进行可调谐的高保真相互作用。示例包括金属配位和主体-客体相互作用以及氢键和 DNA 杂交。在胶体尺度上,这些相互作用可用于驱动可逆开放结构的形成。设计的关键是能够将超分子基元共价连接到颗粒表面上,并/或通过可以介导和指导组装的小分子进行非共价缔合。然后详细描述了利用 DNA 杂交固有的结合强度制备可逆开放式组装的努力。我们描述了导致引入双响应 DNA 介导的正交组装以及提供不同 DNA 键合密堆积格子的胶体簇的策略。进一步的重点放在两个基本且相关的努力上:工程复杂的经历相转变的超结构和具有高密度功能锚的胶体晶体,这有助于结晶。本报告中讨论的设计原则突出了从分子和聚合物长度尺度上结合成熟的非共价相互作用与胶体平台的协同作用,通过设计来构建可重构的功能性结构。定向策略和方法,如图所示,具有分子控制和动态组装的特征,提供了一维和二维开放的格子,并且适用于三维胶体框架。已经报道了多种指导胶体组装的方法,但是很少有方法能够结晶出对光数据存储、电子学和光子学感兴趣的二维和三维结构。实际上,早期的含义是,[supra]分子对胶体组装的控制可以从简单的基本构建块制造出合理结构的设计材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验