Suppr超能文献

由大数据、人工智能和综合基因组-环境预测驱动的智能育种。

Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction.

机构信息

Institute of Crop Sciences, CIMMYT-China, Chinese Academy of Agricultural Sciences, Beijing 100081, China; CIMMYT-China Tropical Maize Research Center, School of Food Science and Engineering, Foshan University, Foshan, Guangdong 528231, China; Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261325, China.

Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261325, China.

出版信息

Mol Plant. 2022 Nov 7;15(11):1664-1695. doi: 10.1016/j.molp.2022.09.001. Epub 2022 Sep 7.

Abstract

The first paradigm of plant breeding involves direct selection-based phenotypic observation, followed by predictive breeding using statistical models for quantitative traits constructed based on genetic experimental design and, more recently, by incorporation of molecular marker genotypes. However, plant performance or phenotype (P) is determined by the combined effects of genotype (G), envirotype (E), and genotype by environment interaction (GEI). Phenotypes can be predicted more precisely by training a model using data collected from multiple sources, including spatiotemporal omics (genomics, phenomics, and enviromics across time and space). Integration of 3D information profiles (G-P-E), each with multidimensionality, provides predictive breeding with both tremendous opportunities and great challenges. Here, we first review innovative technologies for predictive breeding. We then evaluate multidimensional information profiles that can be integrated with a predictive breeding strategy, particularly envirotypic data, which have largely been neglected in data collection and are nearly untouched in model construction. We propose a smart breeding scheme, integrated genomic-enviromic prediction (iGEP), as an extension of genomic prediction, using integrated multiomics information, big data technology, and artificial intelligence (mainly focused on machine and deep learning). We discuss how to implement iGEP, including spatiotemporal models, environmental indices, factorial and spatiotemporal structure of plant breeding data, and cross-species prediction. A strategy is then proposed for prediction-based crop redesign at both the macro (individual, population, and species) and micro (gene, metabolism, and network) scales. Finally, we provide perspectives on translating smart breeding into genetic gain through integrative breeding platforms and open-source breeding initiatives. We call for coordinated efforts in smart breeding through iGEP, institutional partnerships, and innovative technological support.

摘要

植物育种的第一个范例涉及基于表型的直接选择观察,然后使用基于遗传实验设计构建的数量性状统计模型进行预测性育种,最近还结合了分子标记基因型。然而,植物的表现型或表型(P)是由基因型(G)、生态型(E)和基因型与环境互作(GEI)的综合效应决定的。通过使用来自多个来源的数据(包括时空组学(基因组学、表型组学和时空环境组学))训练模型,可以更精确地预测表型。整合具有多维性的 3D 信息谱(G-P-E)为预测性育种提供了巨大的机会和挑战。在这里,我们首先回顾了预测性育种的创新技术。然后,我们评估了可以与预测性育种策略集成的多维信息谱,特别是生态型数据,这些数据在数据收集方面基本上被忽视了,在模型构建中几乎没有触及。我们提出了一种智能育种方案,即整合基因组-环境预测(iGEP),作为基因组预测的扩展,使用整合的多组学信息、大数据技术和人工智能(主要集中在机器和深度学习上)。我们讨论了如何实施 iGEP,包括时空模型、环境指数、植物育种数据的因子和时空结构以及跨物种预测。然后提出了一种基于预测的作物重新设计策略,包括宏观(个体、群体和物种)和微观(基因、代谢和网络)尺度。最后,我们从整合育种平台和开源育种计划的角度提供了将智能育种转化为遗传增益的观点。我们呼吁通过 iGEP、机构伙伴关系和创新技术支持,协调智能育种的努力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验