IMM - Department of Cardiovascular and Renal Research (A.A.P., G.K., A.H.H., U.M.S.), University of Southern Denmark, Odense.
Now with Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (A.A.P.).
Hypertension. 2022 Nov;79(11):2530-2541. doi: 10.1161/HYPERTENSIONAHA.121.18620. Epub 2022 Sep 9.
Angiotensin AT-receptor signaling is atypical for a G-protein coupled receptor and incompletely understood. To obtain novel insights into AT-receptor signaling, we mapped changes in the phosphorylation status of the entire proteome of human aortic endothelial cells in response to AT-receptor stimulation.
Phosphorylation status of human aortic endothelial cells after stimulation with C21 (1 µM; 0, 1, 3, 5, 20 minutes) was determined utilizing time-resolved quantitative phosphoproteomics. Specific changes in protein phosphorylation and acetylation were confirmed by Western Blotting. Functional tests included resazurin assay for cell proliferation, and caspase 3/7 luminescence assay or FACS analysis of annexin V expression for apoptosis.
AT-receptor stimulation significantly altered the phosphorylation status of 172 proteins (46% phosphorylations, 54% dephosphorylations). Bioinformatic analysis revealed a cluster of phospho-modified proteins involved in antiproliferation and apoptosis. Among these proteins, HDAC1 (histone-deacetylase-1) was dephosphorylated at serine involving serine/threonine phosphatases. Resulting HDAC1 inhibition led to p53 acetylation and activation. AT-receptor stimulation induced antiproliferation and apoptosis, which were absent when cells were co-incubated with the p53 inhibitor pifithrin-α, thus indicating p53-dependence of these AT-receptor mediated functions.
Contrary to the prevailing view that AT-receptor signaling largely involves phosphatases, our study revealed significant involvement of kinases. HDAC1 inhibition and resulting p53 activation were identified as novel, AT-receptor coupled signaling mechanisms. Furthermore, the study created an openly available dataset of AT-receptor induced phospho-modified proteins, which has the potential to be the basis for further discoveries of currently unknown, AT-receptor coupled signaling mechanisms.
血管紧张素 AT 受体信号转导是非典型的 G 蛋白偶联受体,其机制尚未完全阐明。为了深入了解 AT 受体信号转导,我们利用时间分辨定量磷酸化蛋白质组学方法,绘制了人主动脉内皮细胞在 AT 受体刺激下整个蛋白质组磷酸化状态的变化图谱。
利用时间分辨定量磷酸化蛋白质组学方法,检测 C21(1µM;0、1、3、5、20 分钟)刺激人主动脉内皮细胞后细胞的磷酸化状态。通过 Western Blotting 验证特定蛋白磷酸化和乙酰化的变化。功能测试包括用于细胞增殖的 Resazurin 测定、caspase 3/7 发光测定或 Annexin V 表达的 FACS 分析用于凋亡。
AT 受体刺激显著改变了 172 种蛋白质的磷酸化状态(46%的磷酸化,54%的去磷酸化)。生物信息学分析显示,一组磷酸化修饰的蛋白参与了抗增殖和凋亡。在这些蛋白质中,HDAC1(组蛋白去乙酰化酶-1)在丝氨酸处去磷酸化,涉及丝氨酸/苏氨酸磷酸酶。由此产生的 HDAC1 抑制导致 p53 乙酰化和激活。AT 受体刺激诱导抗增殖和凋亡,当细胞与 p53 抑制剂 pifithrin-α共同孵育时,这些作用消失,因此表明这些 AT 受体介导的功能依赖于 p53。
与 AT 受体信号转导主要涉及磷酸酶的普遍观点相反,我们的研究表明激酶的显著参与。HDAC1 抑制和由此产生的 p53 激活被确定为新的 AT 受体偶联信号机制。此外,该研究创建了一个公开可用的 AT 受体诱导磷酸化修饰蛋白数据集,该数据集有可能成为进一步发现目前未知的 AT 受体偶联信号机制的基础。