Suppr超能文献

三维面部标志点定位在头影测量分析中的应用。

3D Facial Landmark Localization for cephalometric analysis.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:1016-1019. doi: 10.1109/EMBC48229.2022.9871184.

Abstract

Cephalometric analysis is an important and routine task in the medical field to assess craniofacial development and to diagnose cranial deformities and midline facial abnormalities. The advance of 3D digital techniques potentiated the development of 3D cephalometry, which includes the localization of cephalometric landmarks in the 3D models. However, manual labeling is still applied, being a tedious and time-consuming task, highly prone to intra/inter-observer variability. In this paper, a framework to automatically locate cephalometric landmarks in 3D facial models is presented. The landmark detector is divided into two stages: (i) creation of 2D maps representative of the 3D model; and (ii) landmarks' detection through a regression convolutional neural network (CNN). In the first step, the 3D facial model is transformed to 2D maps retrieved from 3D shape descriptors. In the second stage, a CNN is used to estimate a probability map for each landmark using the 2D representations as input. The detection method was evaluated in three different datasets of 3D facial models, namely the Texas 3DFR, the BU3DFE, and the Bosphorus databases. An average distance error of 2.3, 3.0, and 3.2 mm were obtained for the landmarks evaluated on each dataset. The obtained results demonstrated the accuracy of the method in different 3D facial datasets with a performance competitive to the state-of-the-art methods, allowing to prove its versability to different 3D models. Clinical Relevance- Overall, the performance of the landmark detector demonstrated its potential to be used for 3D cephalometric analysis.

摘要

头影测量分析是医学领域中一项重要且常规的任务,用于评估颅面发育情况,并诊断颅面畸形和中线面部异常。3D 数字技术的进步推动了 3D 头影测量的发展,其中包括在 3D 模型中定位头影测量标志点。然而,目前仍采用手动标记方法,该方法既繁琐又耗时,且容易产生观察者内/间变异性。本文提出了一种在 3D 面部模型中自动定位头影测量标志点的框架。标志点检测器分为两个阶段:(i)创建代表 3D 模型的 2D 图谱;(ii)通过回归卷积神经网络(CNN)进行标志点检测。在第一阶段,将 3D 面部模型转换为从 3D 形状描述符中获取的 2D 图谱。在第二阶段,使用 CNN 基于 2D 表示作为输入,为每个标志点估计概率图谱。该检测方法在三个不同的 3D 面部模型数据集,即德克萨斯 3DFR、BU3DFE 和博斯普鲁斯数据库中进行了评估。在每个数据集上评估的标志点的平均距离误差分别为 2.3、3.0 和 3.2mm。所获得的结果表明,该方法在不同的 3D 面部数据集上具有准确性,性能可与最先进的方法相媲美,证明了其在不同 3D 模型中的通用性。临床意义- 总体而言,标志点检测器的性能证明了其在 3D 头影测量分析中的应用潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验