Suppr超能文献

AFR-BERT:基于注意力机制的特征相关融合多模态情感分析模型。

AFR-BERT: Attention-based mechanism feature relevance fusion multimodal sentiment analysis model.

机构信息

Department of Software Engineering, Faculty of Information and Computer Engineering, The Northeast Forestry University, Harbin, China.

出版信息

PLoS One. 2022 Sep 9;17(9):e0273936. doi: 10.1371/journal.pone.0273936. eCollection 2022.

Abstract

Multimodal sentiment analysis is an essential task in natural language processing which refers to the fact that machines can analyze and recognize emotions through logical reasoning and mathematical operations after learning multimodal emotional features. For the problem of how to consider the effective fusion of multimodal data and the relevance of multimodal data in multimodal sentiment analysis, we propose an attention-based mechanism feature relevance fusion multimodal sentiment analysis model (AFR-BERT). In the data pre-processing stage, text features are extracted using the pre-trained language model BERT (Bi-directional Encoder Representation from Transformers), and the BiLSTM (Bi-directional Long Short-Term Memory) is used to obtain the internal information of the audio. In the data fusion phase, the multimodal data fusion network effectively fuses multimodal features through the interaction of text and audio information. During the data analysis phase, the multimodal data association network analyzes the data by exploring the correlation of fused information between text and audio. In the data output phase, the model outputs the results of multimodal sentiment analysis. We conducted extensive comparative experiments on the publicly available sentiment analysis datasets CMU-MOSI and CMU-MOSEI. The experimental results show that AFR-BERT improves on the classical multimodal sentiment analysis model in terms of relevant performance metrics. In addition, ablation experiments and example analysis show that the multimodal data analysis network in AFR-BERT can effectively capture and analyze the sentiment features in text and audio.

摘要

多模态情感分析是自然语言处理中的一项重要任务,指的是机器经过学习多模态情感特征后,能够通过逻辑推理和数学运算分析和识别情感。针对多模态情感分析中如何考虑多模态数据的有效融合以及多模态数据的相关性问题,提出了一种基于注意力机制特征相关性融合的多模态情感分析模型(AFR-BERT)。在数据预处理阶段,使用预训练语言模型 BERT(来自 Transformer 的双向编码器表示)提取文本特征,并使用 BiLSTM(双向长短期记忆)获取音频的内部信息。在数据融合阶段,多模态数据融合网络通过文本和音频信息的交互,有效地融合多模态特征。在数据分析阶段,多模态数据关联网络通过探索文本和音频之间融合信息的相关性来分析数据。在数据输出阶段,模型输出多模态情感分析的结果。在公开的情感分析数据集 CMU-MOSI 和 CMU-MOSEI 上进行了广泛的对比实验。实验结果表明,AFR-BERT 在相关性能指标上优于经典的多模态情感分析模型。此外,消融实验和案例分析表明,AFR-BERT 中的多模态数据分析网络能够有效地捕捉和分析文本和音频中的情感特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d72/9462790/c0b87a88a249/pone.0273936.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验