Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel.
Department of Biology, Rome University Tor Vergata, Rome, Italy.
Cell Death Dis. 2022 Sep 9;13(9):779. doi: 10.1038/s41419-022-05166-0.
Duchenne muscular dystrophy (DMD) is a genetic disease caused by a mutation in the X-linked Dytrophin gene preventing the expression of the functional protein. Exon skipping therapy using antisense oligonucleotides (AONs) is a promising therapeutic strategy for DMD. While benefits of AON therapy have been demonstrated, some challenges remain before this strategy can be applied more comprehensively to DMD patients. These include instability of AONs due to low nuclease resistance and poor tissue uptake. Delivery systems have been examined to improve the availability and stability of oligonucleotide drugs, including polymeric carriers. Previously, we showed the potential of a hydrogel-based polymeric carrier in the form of injectable PEG-fibrinogen (PF) microspheres for delivery of chemically modified 2'-O-methyl phosphorothioate (2OMePs) AONs. The PF microspheres proved to be cytocompatible and provided sustained release of the AONs for several weeks, causing increased cellular uptake in mdx dystrophic mouse cells. Here, we further investigated this delivery strategy by examining in vivo efficacy of this approach. The 2OMePS/PEI polyplexes loaded in PF microspheres were delivered by intramuscular (IM) or intra-femoral (IF) injections. We examined the carrier biodegradation profiles, AON uptake efficiency, dystrophin restoration, and muscle histopathology. Both administration routes enhanced dystrophin restoration and improved the histopathology of the mdx mice muscles. The IF administration of the microspheres improved the efficacy of the 2OMePS AONs over the IM administration. This was demonstrated by a higher exon skipping percentage and a smaller percentage of centered nucleus fibers (CNF) found in H&E-stained muscles. The restoration of dystrophin expression found for both IM and IF treatments revealed a reduced dystrophic phenotype of the treated muscles. The study concludes that injectable PF microspheres can be used as a carrier system to improve the overall therapeutic outcomes of exon skipping-based therapy for treating DMD.
杜氏肌营养不良症(DMD)是一种由 X 连锁肌营养不良蛋白基因突变引起的遗传性疾病,导致功能性蛋白表达缺失。使用反义寡核苷酸(AON)的外显子跳跃治疗是一种有前途的 DMD 治疗策略。尽管 AON 治疗的益处已得到证实,但在该策略更全面地应用于 DMD 患者之前,仍存在一些挑战。这些挑战包括由于低核酸酶抗性和组织摄取不良导致 AON 的不稳定性。已经研究了输送系统以提高寡核苷酸药物的可用性和稳定性,包括聚合物载体。此前,我们展示了以可注射 PEG-纤维蛋白原(PF)微球形式存在的水凝胶基聚合物载体在递送化学修饰的 2'-O-甲基硫代磷酸酯(2OMePs)AON 方面的潜力。PF 微球被证明具有细胞相容性,并在数周内持续释放 AON,导致 mdx 营养不良小鼠细胞的摄取增加。在这里,我们通过检查这种方法的体内疗效进一步研究了这种输送策略。负载在 PF 微球中的 2OMePS/PEI 聚集体通过肌肉内(IM)或股骨内(IF)注射进行递送。我们检查了载体的生物降解曲线、AON 摄取效率、肌营养不良蛋白的恢复情况和肌肉组织病理学。两种给药途径均增强了肌营养不良蛋白的恢复,并改善了 mdx 小鼠肌肉的组织病理学。与 IM 给药相比,IF 给药的微球提高了 2OMePS AON 的疗效。这是通过在 H&E 染色的肌肉中发现更高的外显子跳跃百分比和更小比例的中心核纤维(CNF)来证明的。IM 和 IF 治疗发现的肌营养不良蛋白表达恢复揭示了治疗肌肉的肌肉营养不良表型减少。该研究得出结论,可注射的 PF 微球可用作载体系统,以提高基于外显子跳跃治疗治疗 DMD 的总体治疗效果。