Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:3741-3744. doi: 10.1109/EMBC48229.2022.9871997.
Dynamic functional network connectivity (dFNC) estimated from resting-state functional magnetic imaging (rs-fMRI) studies the temporal properties of FNC among brain networks by putting them into distinct states using the clustering method. The computational cost of clustering dFNCs has become a significant practical barrier given the availability of enormous neuroimaging datasets. To this end, we developed a new dFNC pipeline to analyze large dFNC data without accessing hug processing capacity. We validated our proposed pipeline and compared it with the standard one using a publicly available dataset. We found that both standard and iSparse kmeans generate similar dFNC states while our approach is 27 times faster than the traditional method in finding the optimum number of clusters and creating better clustering quality.
动态功能网络连接 (dFNC) 通过聚类方法将脑网络中的 FNC 置于不同状态,从静息态功能磁共振成像 (rs-fMRI) 研究中估计功能网络的时间特性。考虑到神经影像学数据集的巨大可用性,聚类 dFNC 的计算成本已成为一个重大的实际障碍。为此,我们开发了一种新的 dFNC 管道,无需访问大量处理能力即可分析大型 dFNC 数据。我们使用公开可用的数据集验证了我们提出的管道,并将其与标准管道进行了比较。我们发现,标准和 iSparse kmeans 生成相似的 dFNC 状态,而我们的方法在找到最佳聚类数量和创建更好的聚类质量方面比传统方法快 27 倍。