Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:5047-5050. doi: 10.1109/EMBC48229.2022.9871780.
While convolutional neural networks (CNNs) have shown potential in segmenting cardiac structures from magnetic resonance (MR) images, their clinical applications still fall short of providing reliable cardiac segmentation. As a result, it is critical to quantify segmentation uncertainty in order to identify which segmentations might be troublesome. Moreover, quantifying uncertainty is critical in real-world scenarios, where input distributions are frequently moved from the training distribution due to sample bias and non-stationarity. Therefore, well-calibrated uncertainty estimates provide information on whether a model's output should (or should not) be trusted in such situations. In this work, we used a Bayesian version of our previously proposed CondenseUNet [1] framework featuring both a learned group structure and a regularized weight-pruner to reduce the computational cost in volumetric image segmentation and help quantify predictive uncertainty. Our study further showcases the potential of our deep-learning framework to evaluate the correlation between the uncertainty and the segmentation errors for a given model. The proposed model was trained and tested on the Automated Cardiac Diagnosis Challenge (ACDC) dataset featuring 150 cine cardiac MRI patient dataset for the segmentation and uncertainty estimation of the left ventricle (LV), right ventricle (RV), and myocardium (Myo) at end-diastole (ED) and end-systole (ES) phases.
虽然卷积神经网络(CNNs)在从磁共振(MR)图像中分割心脏结构方面显示出了潜力,但它们的临床应用仍未能提供可靠的心脏分割。因此,量化分割不确定性以识别哪些分割可能存在问题至关重要。此外,在现实场景中,由于样本偏差和非平稳性,输入分布经常从训练分布中移动,因此量化不确定性至关重要。因此,校准良好的不确定性估计提供了有关在这种情况下模型输出是否应该(或不应该)被信任的信息。在这项工作中,我们使用了我们之前提出的 CondenseUNet [1] 框架的贝叶斯版本,该框架具有学习的分组结构和正则化权重修剪器,以降低容积图像分割的计算成本,并帮助量化预测不确定性。我们的研究进一步展示了我们的深度学习框架评估给定模型的不确定性和分割误差之间相关性的潜力。所提出的模型在 Automated Cardiac Diagnosis Challenge(ACDC)数据集上进行了训练和测试,该数据集包含 150 个电影心脏 MRI 患者数据集,用于在舒张末期(ED)和收缩末期(ES)阶段分割左心室(LV)、右心室(RV)和心肌(Myo)并估计不确定性。