Suppr超能文献

一种应用于虚拟手术规划中的自动 3D 下颌骨分割的混合胶囊网络。

A Hybrid Capsule Network for Automatic 3D Mandible Segmentation applied in Virtual Surgical Planning.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:3768-3771. doi: 10.1109/EMBC48229.2022.9871107.

Abstract

Automatic mandible segmentation of CT images is an essential step to achieve an accurate preoperative prediction of an intended target in three-dimensional (3D) virtual surgical planning. Segmentation of the mandible is a challenging task due to the complexity of the mandible structure, imaging artifacts, and metal implants or dental filling materials. In recent years, utilizing convolutional neural networks (CNNs) have made significant improvements in mandible segmentation. However, aggregating data at pooling layers in addition to collecting and labeling a large volume of data for training CNNs are significant issues in medical practice. We have optimized data-efficient 3D-UCaps to achieve the advantages of both the capsule network and the CNN, for accurate mandible segmentation on volumetric CT images. A novel hybrid loss function based on a weighted combination of the focal and margin loss functions is also proposed to handle the problem of voxel class imbalance. To evaluate the performance of our proposed method, a similar experiment was conducted with the 3D-UNet. All experiments are performed on the public domain database for computational anatomy (PDDCA). The proposed method and 3D-UNet achieved an average dice coefficient of 90% and 88% on the PDDCA, respectively. The results indicate that the proposed method leads to accurate mandible segmentation and outperforms the popular 3D-UNet model. It is concluded that the proposed approach is very effective as it requires more than 50% fewer parameters than the 3D-UNet.

摘要

自动下颌骨分割是实现三维(3D)虚拟手术规划中预期目标准确术前预测的关键步骤。由于下颌骨结构的复杂性、成像伪影以及金属植入物或牙填充材料的存在,下颌骨的分割是一项具有挑战性的任务。近年来,利用卷积神经网络(CNNs)在下颌骨分割方面取得了显著进展。然而,在医学实践中,除了收集和标记大量数据进行训练外,在池化层聚合数据也是一个重大问题。我们优化了数据高效的 3D-UCaps,以在容积 CT 图像上实现准确的下颌骨分割,同时结合了胶囊网络和 CNN 的优势。还提出了一种新的混合损失函数,基于焦点损失函数和边缘损失函数的加权组合,以解决体素类不平衡问题。为了评估我们提出的方法的性能,还在公共领域计算解剖学数据库(PDDCA)上进行了类似的实验。所提出的方法和 3D-UNet 在 PDDCA 上的平均骰子系数分别为 90%和 88%。结果表明,所提出的方法可以实现准确的下颌骨分割,并且优于流行的 3D-UNet 模型。结论是,所提出的方法非常有效,因为它所需的参数比 3D-UNet 少 50%以上。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验