Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:2430-2433. doi: 10.1109/EMBC48229.2022.9871300.
Sleep position monitoring is key when attempting to address posture triggered sleep disorders. Many studies have explored sleep posture detection from a dedicated physical sensing channel exploiting optimum body locations, such as the torso; or alternatively non-contact approaches. But, little work has been done to try to detect sleep position from a body location which, whilst being suboptimal for that purpose, does however allow for better extraction of more critical biomarkers from other sensing modalities, making possible multi-modal monitoring in certain clinical applications. This work presents two different approaches, at varying levels of complexity, for detecting 4 main sleep positions (supine, prone, lateral right and lateral left) from accelerometry data obtained by a single wearable device placed on the neck. An ultra light-weight threshold-based model is presented in this work, in addition to an Extra-Trees classifier. The threshold-based model was able to achieve 95% average accuracy and 0.89 F1-score on out-of-sample data, showing that it is possible to obtain a moderately high classification performance using a simple rule-based model. The ExtraTrees classifier, on the other hand, was able to achieve 99 % average accuracy and 0.99 average F1-score using only 25 base estimators with maximum depth of 20. Both models show promise in detecting sleep posture with high accuracy when collecting the signals from a neck-worn accelerometer sensor.
在尝试解决因姿势引发的睡眠障碍时,睡眠姿势监测是关键。许多研究都从专门的物理感应通道探索了睡眠姿势检测,利用了最佳的身体位置,如躯干;或者采用非接触的方法。但是,很少有工作试图从身体的一个位置来检测睡眠姿势,这个位置虽然不适合这个目的,但它确实可以从其他感应模式中更好地提取更关键的生物标志物,从而在某些临床应用中实现多模态监测。这项工作提出了两种不同的方法,分别具有不同的复杂程度,用于从单个可穿戴设备放置在颈部上获得的加速度计数据中检测 4 种主要的睡眠姿势(仰卧、俯卧、右侧侧卧和左侧侧卧)。除了 Extra-Trees 分类器外,本文还提出了一个超轻量级基于阈值的模型。基于阈值的模型在样本外数据上能够达到 95%的平均准确率和 0.89 的 F1 分数,表明使用简单的基于规则的模型可以获得较高的分类性能。另一方面,ExtraTrees 分类器仅使用最大深度为 20 的 25 个基本估计器即可达到 99%的平均准确率和 0.99 的平均 F1 分数。这两个模型都在从佩戴在颈部的加速度计传感器收集信号时,显示出了以高精度检测睡眠姿势的潜力。