Suppr超能文献

基于脑电图的晕车评估和减少模拟自动驾驶环境中的感官冲突。

EEG-based evaluation of motion sickness and reducing sensory conflict in a simulated autonomous driving environment.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:4026-4030. doi: 10.1109/EMBC48229.2022.9871407.

Abstract

Autonomous driving offers significant potential for changes in the automotive industry. However, sensory conflict during autonomous driving can lead to motion sickness. Quantitative evaluation and effective preventions to predict and reduce motion sickness are needed. The goal of this study is to verify the objective indicator of motion sickness level based on encephalography (EEG) that we proposed before and investigate the influence of attenuating sensory conflict on motion sickness. A 6-degree of freedom (DOF) driving simulator platform was used to provide an autonomous driving environment to the subjects, and the subjective motion sickness level (MSL), as well as the EEG signals of 15 healthy subjects, were collected simultaneously during 3 conditions, i) autonomous driving, ii) autonomous driving with eyes blindfolded and iii) active driving. The MSLs were reported by the subjects every two minutes, providing a reference to the recorded EEG signals. The EEG signals were analyzed and compared among different conditions. Average MSLs were higher in autonomous driving than in autonomous driving with eyes blindfolded and active driving, together with the increase of the mean EEG frequency of theta band in the central, parietal and occipital areas (FC5, Cz, CP5, P3, and POz). These findings validated that EEG mean frequency of theta band could be an indicator of motion sickness, besides an attenuated visual input or active control of the vehicle can effectively reduce the generation of motion sickness.

摘要

自动驾驶为汽车行业带来了重大变革潜力。然而,自动驾驶过程中的感官冲突可能会导致晕车。因此,需要对晕车进行定量评估和有效预防,以预测和减轻晕车。本研究旨在验证我们之前提出的基于脑电图(EEG)的晕车水平客观指标,并研究减轻感官冲突对晕车的影响。使用 6 自由度(DOF)驾驶模拟器平台为受试者提供自动驾驶环境,并在 3 种情况下同时采集 15 名健康受试者的主观晕车水平(MSL)和 EEG 信号:i)自动驾驶,ii)自动驾驶时眼睛被蒙住,iii)主动驾驶。受试者每两分钟报告一次 MSL,为记录的 EEG 信号提供参考。对不同条件下的 EEG 信号进行分析和比较。自动驾驶时的平均 MSL 高于自动驾驶时眼睛被蒙住和主动驾驶时的平均 MSL,同时中央、顶区和枕区(FC5、Cz、CP5、P3 和 POz)的θ频段 EEG 平均频率增加。这些发现验证了θ频段 EEG 平均频率可以作为晕车的指标,此外,视觉输入减弱或车辆主动控制可以有效减少晕车的发生。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验