Suppr超能文献

基于神经网络的算法,用于使用高阶谐波处理对手腕式 PPG 的声谱图分类。

Neural network based algorithm for a spectrogram classification of wrist-type PPG using high-order harmonics processing.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:3405-3408. doi: 10.1109/EMBC48229.2022.9871050.

Abstract

The importance of accurate and continuous heart rate monitoring during workout cannot be overestimated. Supporting heart rate in the desired range, you strengthen the heart muscle and the overall fitness level. Therefore, the precise heart rate measurements are important at each stage: before workout, during exercises and after completion. One of the most important problems for precise heart rate measurement during high intensive exercises with the help of wearable devices is the movement artifacts. Even the smallest movement of the muscles, the turn of the wrist, the movement of the fingers or even the displacement of the fitness tracker per millimeter - all this very much distorts the useful signal. To solve the problem of motion artifacts, both digital signal processing approaches are used, as well as deep learning methods. In this paper, we offer a new method of processing the signal of wearable devices during workout, in particular to solve the motion artifacts problem, using deep neural networks. A distinctive feature of the model is the use of higher signal harmonics to determine the shape and type of signal. In particular, a method is proposed for classifying the signal spectrogram to noise, movement and useful component. During cross-validation on an available datasets, we compared the effectiveness of the proposed approach for spectrogram classification and received an improvement of averaged ROC AUC (area under the receiver operating characteristic curve) and F1 Score by 5% by using higher harmonics. Clinical relevance- This work aims to provide an approach for a wearable devices PPG signal spectrogram classification using neural networks and high-order harmonics processing.

摘要

在锻炼过程中准确、连续地监测心率的重要性怎么强调都不为过。在目标心率范围内进行锻炼,可以增强心肌和整体健康水平。因此,在每个阶段(锻炼前、锻炼中和锻炼后)都需要进行精确的心率测量。在使用可穿戴设备进行高强度运动时,精确测量心率的最重要问题之一是运动伪影。即使是肌肉的最小运动、手腕的转动、手指的移动甚至是健身追踪器每毫米的位移——所有这些都会极大地扭曲有用信号。为了解决运动伪影问题,同时使用了数字信号处理方法和深度学习方法。在本文中,我们提出了一种在锻炼期间处理可穿戴设备信号的新方法,特别是使用深度神经网络来解决运动伪影问题。该模型的一个特点是使用更高的信号谐波来确定信号的形状和类型。特别是,提出了一种对信号频谱图进行分类的方法,分为噪声、运动和有用分量。在对现有数据集进行交叉验证时,我们比较了使用更高谐波进行频谱图分类的效果,发现平均 ROC AUC(接受者操作特征曲线下的面积)和 F1 评分提高了 5%。临床意义——这项工作旨在提供一种使用神经网络和高阶谐波处理对可穿戴设备 PPG 信号频谱图进行分类的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验