基于多参考自适应噪声消除的腕部 PPG 信号实时心率估计
Real-Time Robust Heart Rate Estimation From Wrist-Type PPG Signals Using Multiple Reference Adaptive Noise Cancellation.
出版信息
IEEE J Biomed Health Inform. 2018 Mar;22(2):450-459. doi: 10.1109/JBHI.2016.2632201. Epub 2016 Nov 23.
Heart rate (HR) monitoring using photoplethysmographic (PPG) signals recorded from wearers' wrist greatly facilitates design of wearable devices and maximizes user experience. However, placing PPG sensors in wrist causes much stronger and complicated motion artifacts (MA) due to loose interface between sensors and skin. Therefore, developing robust HR estimation algorithms for wrist-type PPG signals has significant commercial values. In this paper, we propose a robust HR estimation algorithm for wrist-type PPG signals using multiple reference adaptive noise cancellation (ANC) technique-termed here as "MURAD." The main challenge of using ANC for MA reduction is to devise a qualified reference noise signal (RNS) to the adaptive filter. We propose a novel solution by using four RNSs, namely, the three-axis accelerometer data and the difference signal between the two PPG signals. For each RNS, we get a different version of the cleaned PPG signal. Then, a set of probable HR values is estimated using all of the cleaned PPG signals, and then, the value that is closest to the estimated HR of the previous time window is chosen to be the HR estimate of the current window. Then, some peak verification techniques are employed to ensure accurate HR estimations. The proposed technique gives lower average absolute error compared to state-of-the art methods. So, MURAD method provides a promising solution to the challenge of HR monitoring using PPG in wearable devices during severe MA conditions.
利用佩戴者腕部记录的光电容积脉搏波(PPG)信号进行心率(HR)监测,极大地方便了可穿戴设备的设计,最大化了用户体验。然而,将 PPG 传感器放置在手腕上会由于传感器与皮肤之间的接口松动而导致更强和更复杂的运动伪影(MA)。因此,开发用于腕部 PPG 信号的稳健 HR 估计算法具有重要的商业价值。在本文中,我们提出了一种使用多参考自适应噪声消除(ANC)技术的稳健 HR 估计算法,称为“MURAD”。使用 ANC 来减少 MA 的主要挑战是为自适应滤波器设计一个合格的参考噪声信号(RNS)。我们提出了一种新颖的解决方案,使用四个 RNS,即三轴加速度计数据和两个 PPG 信号之间的差分信号。对于每个 RNS,我们得到一个不同版本的清洁 PPG 信号。然后,使用所有清洁的 PPG 信号估计一组可能的 HR 值,然后选择最接近前一时间窗口估计 HR 的值作为当前窗口的 HR 估计值。然后,采用一些峰值验证技术以确保准确的 HR 估计。与最先进的方法相比,所提出的技术具有更低的平均绝对误差。因此,MURAD 方法为在严重 MA 条件下使用 PPG 在可穿戴设备中进行 HR 监测的挑战提供了一种有前途的解决方案。