Suppr超能文献

小脑在肌张力障碍中的作用:关联学习期间尖峰神经网络模型的研究进展。

Cerebellum involvement in dystonia: insights from a spiking neural network model during associative learning.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:5132-5135. doi: 10.1109/EMBC48229.2022.9871205.

Abstract

Dystonia is a neurological movement disorder characterized by twisting and repetitive movements or abnormal fixed postures. This complex brain disease has usually been associated with damages to the Basal Ganglia. However, recent studies point out the potential role of the cerebellum. Indeed, motor learning is impaired in dystonic patients, e.g. during eyeblink classical conditioning, a typical cerebellum-driven associative learning protocol, and rodents with local cerebellar damages exhibit dystonic movements. Alterations in the olivocerebellar circuit connectivity have been identified as a potential neural substrate of dystonia. Here, we investigated this hypothesis through simulations of eyeblink conditioning driven by a realistic spiking model of the cerebellum. The pathological model was generated by decreasing the signal transmission from the Inferior Olive to cerebellar cortex, as observed in animal experiments. The model was able to reproduce a reduced acquisition of eyeblink motor responses, with also an unproper timing. Indeed, this pathway is fundamental to drive cerebellar cortical plasticity, which is the basis of cerebellum-driven motor learning. Exploring different levels of damage, the model predicted the possible amount of underlying impairment associated with the misbehavior observed in patients. Simulations of other debated lesions reported in mouse models of dystonia will be run to investigate the cerebellar involvement in different types of dystonia. Indeed, the eyeblink conditioning phenotype could be used to discriminate between them, identifying specific deficits in the generation of motor responses. Future studies will also include simulations of pharmacological or deep brain stimulation treatments targeting the cerebellum, to predict their impact in improving symptoms.

摘要

肌张力障碍是一种以扭曲和重复运动或异常固定姿势为特征的神经运动障碍。这种复杂的脑部疾病通常与基底神经节损伤有关。然而,最近的研究指出小脑的潜在作用。事实上,肌张力障碍患者的运动学习受到损害,例如在眨眼经典条件反射中,这是一种典型的小脑驱动的联想学习方案,而局部小脑损伤的啮齿动物表现出肌张力障碍运动。橄榄小脑回路连接性的改变已被确定为肌张力障碍的潜在神经基础。在这里,我们通过使用小脑的真实尖峰模型驱动的眨眼条件反射模拟来研究这一假设。病理模型是通过降低从下橄榄核到小脑皮层的信号传输来生成的,就像在动物实验中观察到的那样。该模型能够重现眨眼运动反应的减少获得,并且定时也不正确。事实上,这条通路是驱动小脑皮层可塑性的基础,而小脑皮层可塑性是小脑驱动运动学习的基础。通过探索不同程度的损伤,该模型预测了与患者观察到的异常行为相关的潜在损伤的可能程度。将对其他在肌张力障碍小鼠模型中报道的有争议的病变进行模拟,以研究小脑在不同类型的肌张力障碍中的参与情况。事实上,眨眼条件反射表型可用于对其进行区分,确定在产生运动反应方面的特定缺陷。未来的研究还将包括针对小脑的药理学或深部脑刺激治疗的模拟,以预测其改善症状的效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验