Suppr超能文献

基于无监督学习方法的非侵入式胎儿心电图信号质量评估。

Non-invasive Fetal ECG Signal Quality Assessment based on Unsupervised Learning Approach.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:1296-1299. doi: 10.1109/EMBC48229.2022.9870908.

Abstract

The non-invasive fetal electrocardiogram (FECG) derived from abdominal surface electrodes has been widely used for fetal heart rate (FHR) monitoring to assess fetal well-being. However, the accuracy of FECG-based FHR estimation heavily depends on the quality of FECG signal itself, which can generally be affected by several interference sources such as maternal heart activities and fetal movements. Hence, FECG signal quality assessment (SQA) is an essential task to improve the accuracy of FHR estimation by removing or interpolating low-quality FECG signals. In recent research, various SQA methods based on supervised learning have been proposed. Although these methods could perform accurate SQA, they require large labeled datasets. Nevertheless, the labeled datasets for the FECG SQA are very limited. In this paper, to address this limitation, we propose an unsupervised learning-based SQA method for identifying high and low-quality FECG signal segments. Specifically, a fully convolutional network (FCN)-based autoencoder (AE) is trained for reconstructing a spectrogram derived from FECG. An AE-based feature related to reconstruction error is then calculated to identify high and low-quality FECG segments. In addition, entropy-based features, statistical features, and ECG signal quality indices (SQIs) are also extracted. The high and low-quality segments are identified by feeding the extracted features into self-organizing map (SOM). The experimental results showed that our proposal achieved an accuracy of 98% in high and low-quality signal classification.

摘要

从腹部表面电极获得的非侵入性胎儿心电图 (FECG) 已广泛用于胎儿心率 (FHR) 监测,以评估胎儿的健康状况。然而,基于 FECG 的 FHR 估计的准确性在很大程度上取决于 FECG 信号本身的质量,而 FECG 信号本身的质量通常会受到多种干扰源的影响,例如母体心脏活动和胎儿运动。因此,FECG 信号质量评估 (SQA) 是通过去除或内插低质量 FECG 信号来提高 FHR 估计准确性的一项重要任务。在最近的研究中,已经提出了各种基于监督学习的 SQA 方法。虽然这些方法可以进行准确的 SQA,但它们需要大量标记数据集。然而,用于 FECG SQA 的标记数据集非常有限。在本文中,为了解决这个限制,我们提出了一种基于无监督学习的 SQA 方法,用于识别高质量和低质量的 FECG 信号段。具体来说,基于全卷积网络 (FCN) 的自动编码器 (AE) 用于重建从 FECG 导出的频谱图。然后计算基于 AE 的与重建误差相关的特征,以识别高质量和低质量的 FECG 段。此外,还提取了熵特征、统计特征和心电图信号质量指数 (SQI)。通过将提取的特征输入自组织映射 (SOM) 来识别高质量和低质量的段。实验结果表明,我们的建议在高质量和低质量信号分类中达到了 98%的准确率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验