Suppr超能文献

深度学习在评估非侵入性胎儿心电图信号质量中的应用。

A Deep Learning Approach for the Assessment of Signal Quality of Non-Invasive Foetal Electrocardiography.

机构信息

Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX1 2JD, UK.

Oxford Suzhou Centre for Advanced Research, Suzhou 215123, China.

出版信息

Sensors (Basel). 2022 Apr 26;22(9):3303. doi: 10.3390/s22093303.

Abstract

Non-invasive foetal electrocardiography (NI-FECG) has become an important prenatal monitoring method in the hospital. However, due to its susceptibility to non-stationary noise sources and lack of robust extraction methods, the capture of high-quality NI-FECG remains a challenge. Recording waveforms of sufficient quality for clinical use typically requires human visual inspection of each recording. A Signal Quality Index (SQI) can help to automate this task but, contrary to adult ECG, work on SQIs for NI-FECG is sparse. In this paper, a multi-channel signal quality classifier for NI-FECG waveforms is presented. The model can be used during the capture of NI-FECG to assist technicians to record high-quality waveforms, which is currently a labour-intensive task. A Convolutional Neural Network (CNN) is trained to distinguish between NI-FECG segments of high and low quality. NI-FECG recordings with one maternal channel and three abdominal channels were collected from 100 subjects during a routine hospital screening (102.6 min of data). The model achieves an average 10-fold cross-validated AUC of 0.95 ± 0.02. The results show that the model can reliably assess the FECG signal quality on our dataset. The proposed model can improve the automated capture and analysis of NI-FECG as well as reduce technician labour time.

摘要

非侵入式胎儿心电图(NI-FECG)已成为医院中重要的产前监测方法。然而,由于其易受非平稳噪声源的影响,且缺乏稳健的提取方法,因此仍然难以捕捉到高质量的 NI-FECG。为了临床使用,通常需要人工检查每个记录以获得足够质量的记录波形。信号质量指数(SQI)可用于自动化此任务,但与成人心电图不同,针对 NI-FECG 的 SQI 研究很少。本文提出了一种用于 NI-FECG 波形的多通道信号质量分类器。该模型可用于 NI-FECG 采集过程中,以协助技术人员记录高质量的波形,而这目前是一项劳动密集型任务。使用卷积神经网络(CNN)来区分高质量和低质量的 NI-FECG 段。从 100 名接受常规医院筛查的受试者(102.6 分钟的数据)的 1 个母体通道和 3 个腹部通道中采集 NI-FECG 记录。该模型的平均 10 倍交叉验证 AUC 为 0.95±0.02。结果表明,该模型可以可靠地评估我们数据集上的 FECG 信号质量。所提出的模型可以改进 NI-FECG 的自动采集和分析,并减少技术人员的劳动时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55e8/9103336/2bf959766370/sensors-22-03303-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验