Suppr超能文献

基于 GAN 的眼底图像合成在视网膜图像分类器训练中的应用

Fundus GAN - GAN-based Fundus Image Synthesis for Training Retinal Image Classifiers.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:2185-2189. doi: 10.1109/EMBC48229.2022.9871771.

Abstract

Two major challenges in applying deep learning to develop a computer-aided diagnosis of fundus images are the lack of enough labeled data and legal issues with patient privacy. Various efforts are being made to increase the amount of data either by augmenting training images or by synthesizing realistic-looking fundus images. However, augmentation is limited by the amount of available data and it does not address the patient privacy concern. In this paper, we propose a Generative Adversarial Network-based (GAN-based) fundus image synthesis method (Fundus GAN) that generates synthetic training images to solve the above problems. Fundus GAN is an improved way of generating retinal images by following a two-step generation process which involves first training a segmentation network to extract the vessel tree followed by vessel tree to fundus image-to-image translation using unsupervised generative attention networks. Our results show that the proposed Fundus GAN outperforms state of the art methods in different evaluation metrics. Our results also validate that generated retinal images can be used to train retinal image classifiers for eye diseases diagnosis. Clinical Relevance- Our proposed method Fundus GAN helps in solving the shortage of patient privacy-preserving training data in developing algorithms for automating image- based eye disease diagnosis. The proposed two-step GAN- based image synthesis can be used to improve the classification accuracy of retinal image classifiers without compromising the privacy of the patient.

摘要

将深度学习应用于眼底图像计算机辅助诊断面临两个主要挑战,一是缺乏足够的标注数据,二是涉及患者隐私的法律问题。人们正在通过各种方式来增加数据量,包括扩充训练图像或合成逼真的眼底图像。然而,扩充受可用数据量的限制,并且不能解决患者隐私问题。在本文中,我们提出了一种基于生成对抗网络(GAN)的眼底图像合成方法(Fundus GAN),该方法通过生成合成训练图像来解决上述问题。Fundus GAN 是一种改进的视网膜图像生成方法,它采用两步生成过程,首先训练分割网络提取血管树,然后使用无监督生成注意力网络进行血管树到眼底图像的图像到图像转换。我们的结果表明,所提出的 Fundus GAN 在不同的评估指标上优于最先进的方法。我们的结果还验证了生成的视网膜图像可用于训练用于眼部疾病诊断的视网膜图像分类器。临床相关性-我们提出的方法 Fundus GAN 有助于解决在开发基于图像的眼部疾病诊断自动化算法中缺乏患者隐私保护训练数据的问题。所提出的两步 GAN 基于图像合成可用于提高视网膜图像分类器的分类准确性,而不会损害患者的隐私。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验