Suppr超能文献

从二氧化碳原料到酵母生长的微生物电合成,用于生产高价值的异戊二烯。

Microbial electrosynthesis from carbon dioxide feedstock linked to yeast growth for the production of high-value isoprenoids.

机构信息

Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India.

Department of Biological Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India.

出版信息

Bioresour Technol. 2022 Nov;363:127906. doi: 10.1016/j.biortech.2022.127906. Epub 2022 Sep 7.

Abstract

The difficulty in producing multi-carbon and thus high-value chemicals from CO is one of the key challenges of microbial electrosynthesis (MES) and other CO utilization technologies. Here, we demonstrate a two-stage bioproduction approach to produce terpenoids (>C) and yeast biomass from CO by linking MES and yeast cultivation approaches. In the first stage, CO (C) is converted to acetate (C) using Clostridium ljungdahlii via MES. The acetate is then directly used as the feedstock to produce sclareol (C), β-carotene (C), and yeast biomass using Saccharomyces cerevisiae in the second stage. With the unpurified acetate-containing (1.5 g/L) spent medium from MES reactors, S. cerevisiae produced 0.32 ± 0.04 mg/L β-carotene, 2.54 ± 0.91 mg/L sclareol, and 369.66 ± 41.67 mg/L biomass. The primary economic analysis suggests that sclareol and biomass production is feasible using recombinant S. cerevisiae and non-recombinant S. cerevisiae, respectively, directly from unpurified acetate-containing spent medium of MES.

摘要

从 CO 中生产多碳化合物,从而生产高价值化学品,这是微生物电化学合成(MES)和其他 CO 利用技术的关键挑战之一。在这里,我们通过将 MES 和酵母培养方法相结合,展示了一种从 CO 生产萜类化合物(>C)和酵母生物质的两阶段生物生产方法。在第一阶段,通过 MES 利用 Clostridium ljungdahlii 将 CO(C)转化为乙酸盐(C)。然后,乙酸盐可直接用作原料,在第二阶段使用酿酒酵母生产石竹烯(C)、β-胡萝卜素(C)和酵母生物质。使用未经纯化的含有乙酸盐的(1.5 g/L)MES 反应器废培养基,酿酒酵母产生了 0.32 ± 0.04 mg/L 的β-胡萝卜素、2.54 ± 0.91 mg/L 的石竹烯和 369.66 ± 41.67 mg/L 的生物质。初步经济分析表明,使用重组酿酒酵母和非重组酿酒酵母分别可直接从 MES 未经纯化的含乙酸盐废培养基中生产石竹烯和生物质,这是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验