Suppr超能文献

基于转录组数据的网络方法检测泛癌表面蛋白生物标志物。

Detection of pan-cancer surface protein biomarkers via a network-based approach on transcriptomics data.

机构信息

Department of Pharmacy and Biotechnology, University of Bologna, 40138 Bologna, Italy.

Department of Surgical and Medical Sciences, Magna Graecia University, 88100 Catanzaro, Italy.

出版信息

Brief Bioinform. 2022 Sep 20;23(5). doi: 10.1093/bib/bbac400.

Abstract

Cell surface proteins have been used as diagnostic and prognostic markers in cancer research and as targets for the development of anticancer agents. Many of these proteins lie at the top of signaling cascades regulating cell responses and gene expression, therefore acting as 'signaling hubs'. It has been previously demonstrated that the integrated network analysis on transcriptomic data is able to infer cell surface protein activity in breast cancer. Such an approach has been implemented in a publicly available method called 'SURFACER'. SURFACER implements a network-based analysis of transcriptomic data focusing on the overall activity of curated surface proteins, with the final aim to identify those proteins driving major phenotypic changes at a network level, named surface signaling hubs. Here, we show the ability of SURFACER to discover relevant knowledge within and across cancer datasets. We also show how different cancers can be stratified in surface-activity-specific groups. Our strategy may identify cancer-wide markers to design targeted therapies and biomarker-based diagnostic approaches.

摘要

细胞表面蛋白已被广泛用于癌症研究中的诊断和预后标志物,以及作为抗癌药物开发的靶点。这些蛋白质中的许多位于调节细胞反应和基因表达的信号级联的顶端,因此它们充当“信号枢纽”。先前已经证明,基于转录组数据的综合网络分析能够推断乳腺癌中的细胞表面蛋白活性。这种方法已在一种名为“SURFACER”的公开方法中实施。SURFACER 对转录组数据进行基于网络的分析,重点关注经过精心整理的表面蛋白的整体活性,最终目的是识别在网络层面上驱动主要表型变化的那些蛋白,这些蛋白被称为表面信号枢纽。在这里,我们展示了 SURFACER 在癌症数据集内和跨数据集发现相关知识的能力。我们还展示了如何根据表面活性将不同的癌症进行分类。我们的策略可以识别广泛的癌症标志物,以设计靶向治疗和基于生物标志物的诊断方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验