Suppr超能文献

用于重新利用抗病毒化合物对抗猴痘病毒胸苷酸激酶的化学信息学和机器学习方法。

Cheminformatics and machine learning approaches for repurposing anti-viral compounds against monkeypox virus thymidylate kinase.

作者信息

Rabaan Ali A, Alwashmi Ameen S S, Mashraqi Mutaib M, Alshehri Ahmad A, Alawfi Abdulsalam, Alshengeti Amer, Najim Mustafa A, AlShehail Bashayer M, AlShahrani Abdullah J, Garout Mohammed

机构信息

Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, 31311, Dhahran, Saudi Arabia.

College of Medicine, Alfaisal University, 11533, Riyadh, Saudi Arabia.

出版信息

Mol Divers. 2024 Oct;28(5):2735-2748. doi: 10.1007/s11030-023-10705-8. Epub 2023 Aug 2.

Abstract

One of the emerging epidemic concerns is Monkeypox disease which is spreading globally. This disease is caused by the monkeypox virus (MPXV), with an increasing global incidence with an outbreak in 2022. One of the novel targets for monkeypox disease is thymidylate kinase, which is involved in pyrimidine metabolism. In this study, docking-based virtual screening and molecular dynamics techniques were employed in addition to the machine learning (ML) model to investigate the potential anti-viral natural small compounds to inhibit thymidylate kinase of MPXV. Several potential hits were identified through high-throughput virtual screening, and further top three candidates were selected, which ranked using the ML model. These three compounds were then examined under molecular dynamics simulation and MM/GBSA-binding free energy analysis. Among these, Chlorhexidine HCl showed high potential for binding to the thymidylate kinase with stable and consistent conformation with RMSD < 0.3 nm. The MM/GBSA analysis also showed the minimum binding free energy (ΔG) of -62.41 kcal/mol for this compound. Overall, this study used structure-based drug design complemented by machine learning-guided ligand-based drug design to screen potential hit compounds from the anti-viral natural compound database.

摘要

一种新出现的流行病问题是正在全球传播的猴痘疾病。这种疾病由猴痘病毒(MPXV)引起,在2022年爆发后全球发病率不断上升。猴痘疾病的新靶点之一是胸苷酸激酶,它参与嘧啶代谢。在本研究中,除了机器学习(ML)模型外,还采用了基于对接的虚拟筛选和分子动力学技术,以研究潜在的抗病毒天然小化合物对MPXV胸苷酸激酶的抑制作用。通过高通量虚拟筛选鉴定出了几种潜在的命中化合物,并使用ML模型进一步选出了排名靠前的三种候选化合物。然后对这三种化合物进行分子动力学模拟和MM/GBSA结合自由能分析。其中,盐酸氯己定显示出与胸苷酸激酶结合的高潜力,其构象稳定且一致,均方根偏差(RMSD)<0.3nm。MM/GBSA分析还显示该化合物的最小结合自由能(ΔG)为-62.41kcal/mol。总体而言,本研究采用基于结构的药物设计,并辅以机器学习指导的基于配体的药物设计,从抗病毒天然化合物数据库中筛选潜在的命中化合物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验