Suppr超能文献

低浓度臭氧对MIL-100(Fe)和MIL-100(Mn)在较大湿度波动范围内的不同降解机制

Different degradation mechanisms of low-concentration ozone for MIL-100(Fe) and MIL-100(Mn) over wide humidity fluctuation.

作者信息

Song Guanqing, Shi Gansheng, Chen Lu, Wang Xiao, Sun Jing, Yu Lei, Xie Xiaofeng

机构信息

State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China; University of Chinese Academy of Sciences, 19 (A) Yuquan Road, Beijing, 100049, China.

State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China.

出版信息

Chemosphere. 2022 Dec;308(Pt 2):136352. doi: 10.1016/j.chemosphere.2022.136352. Epub 2022 Sep 8.

Abstract

The synergistic control of ozone and fine particulate matter is a research hotspot in the current environmental fields. Among the ozone removal, wide humidity fluctuation and low concentration dynamic adsorption are two thorny problems. In this work, MIL-100(Fe) and MIL-100(Mn), synthesized by hydrothermal and solvothermal methods respectively, were selected to investigate the degradation of flowing ozone pollutants. The samples showed different ozone degradation mechanisms, namely photocatalytic degradation and normal temperature degradation. Notably, MIL-100(Fe) exhibited more outstanding photocatalytic activity than MIL-100(Mn), while the normal temperature catalytic efficiency of MIL-100(Mn) was much superior to MIL-100(Fe). For different humidity conditions, MIL-100(Fe) has the optimal photocatalytic performance at 10% humidity, which is 38%, while MIL-100(Mn) has basically no change in normal temperature catalytic degradation efficiency at different humidity levels of 10-90%. Furthermore, the degradation mechanism was proposed by in-situ DRIFTS and ESR, which was significantly correlated with oxygen vacancy and photogenerated electron efficiency. By the aid of Temperature Programmed Desorption (TPD), a large quantity of Lewis acid sites was detected in MIL-100(Mn), which was the critical factor that the selected materials could maintain excellent normal temperature degradation performance under high humidity. This work will expand the practical application of ozone removal and improve the degradation efficiency.

摘要

臭氧与细颗粒物的协同控制是当前环境领域的研究热点。在臭氧去除过程中,湿度波动大以及低浓度动态吸附是两个棘手的问题。在这项工作中,分别采用水热法和溶剂热法合成的MIL-100(Fe)和MIL-100(Mn)被用于研究流动态臭氧污染物的降解情况。这些样品呈现出不同的臭氧降解机制,即光催化降解和常温降解。值得注意的是,MIL-100(Fe)表现出比MIL-100(Mn)更优异的光催化活性,而MIL-100(Mn)的常温催化效率则远优于MIL-100(Fe)。对于不同湿度条件,MIL-100(Fe)在湿度为10%时具有最佳光催化性能,为38%,而MIL-100(Mn)在10%-90%的不同湿度水平下常温催化降解效率基本无变化。此外,通过原位漫反射红外傅里叶变换光谱(in-situ DRIFTS)和电子自旋共振(ESR)提出了降解机制,其与氧空位和光生电子效率显著相关。借助程序升温脱附(TPD),在MIL-100(Mn)中检测到大量路易斯酸位点,这是所选材料在高湿度下能够保持优异常温降解性能的关键因素。这项工作将拓展臭氧去除的实际应用并提高降解效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验