Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China.
The Third Affiliated Hospital of Naval Medical University, Shanghai 200433, China.
ACS Appl Mater Interfaces. 2022 Sep 21;14(37):42454-42467. doi: 10.1021/acsami.2c11737. Epub 2022 Sep 11.
Organophosphorus compounds (OPs) pose great military and civilian hazards. However, therapeutic and prophylactic antidotes against OP poisoning remain challenging. In this study, we first developed a novel nanoscavenger (rOPH/ZIF-8@E-Lipo) against methyl paraoxon (MP) poisoning using enzyme immobilization and erythrocyte-liposome hybrid membrane camouflage techniques. Then, we evaluated the physicochemical characterization, stability, and biocompatibility of the nanoscavengers. Afterward, we examined acetylcholinesterase (AChE) activity, cell viability, and intracellular reactive oxygen species (ROS) to indicate the protective effects of the nanoscavengers . Following the pharmacokinetic and biodistribution studies, we further evaluated the therapeutic and prophylactic detoxification efficacy of the nanoscavengers against MP in various poisoning settings. Finally, we explored the penetration capacity of the nanoscavengers across the blood-brain barrier (BBB). The present study validated the successful construction of a novel nanoscavenger with excellent stability and biocompatibility. , the resulting nanoscavenger exhibited a significant protection against MP-induced AChE inactivation, oxidative stress, and cytotoxicity. , apart from the positive therapeutic effects, the nanoscavengers also exerted significant prophylactic detoxification efficacy against single lethal MP exposure, repeated lethal MP challenges, and sublethal MP poisoning. These excellent detoxification effects of the nanoscavengers against OPs may originate from a dual-mode mechanism of inner recombinant organophosphorus hydrolase (rOPH) and outer erythrocyte membrane-anchored AChE. Finally, and studies jointly demonstrated that monosialoganglioside (GM1)-modified rOPH/ZIF-8@E-Lipo could penetrate the BBB with high efficiency. In conclusion, a stable and safe dual-modal nanoscavenger was developed with BBB penetration capability, providing a promising strategy for the treatment and prevention of OP poisoning.
有机磷化合物(OPs)对军事和民用都构成了巨大的危害。然而,针对 OP 中毒的治疗和预防解毒剂仍然具有挑战性。在本研究中,我们首次使用酶固定化和红细胞 - 脂质体混合膜伪装技术,开发了一种针对甲基对氧磷(MP)中毒的新型纳米清除剂(rOPH/ZIF-8@E-Lipo)。然后,我们评估了纳米清除剂的理化特性、稳定性和生物相容性。接下来,我们检测了乙酰胆碱酯酶(AChE)活性、细胞活力和细胞内活性氧(ROS),以表明纳米清除剂的保护作用。在进行药代动力学和生物分布研究后,我们进一步评估了纳米清除剂在各种中毒情况下对 MP 的治疗和预防解毒效果。最后,我们探讨了纳米清除剂穿过血脑屏障(BBB)的穿透能力。本研究验证了成功构建了具有优异稳定性和生物相容性的新型纳米清除剂。结果表明,该纳米清除剂对 MP 诱导的 AChE 失活、氧化应激和细胞毒性具有显著的保护作用。此外,除了积极的治疗效果外,纳米清除剂对单次致死剂量 MP 暴露、重复致死剂量 MP 挑战和亚致死剂量 MP 中毒也具有显著的预防解毒作用。纳米清除剂对 OPs 的这种出色解毒效果可能源于内重组有机磷水解酶(rOPH)和外红细胞膜锚定 AChE 的双重作用模式。最后,体内和体外研究共同表明,单唾液酸神经节苷脂(GM1)修饰的 rOPH/ZIF-8@E-Lipo 可以高效穿透 BBB。总之,开发了一种具有 BBB 穿透能力的稳定且安全的双模态纳米清除剂,为 OP 中毒的治疗和预防提供了一种有前景的策略。